Skip to main content
Log in

A sensitive electrochemical immunosensing interface for label-free detection of aflatoxin B1 by attachment of nanobody to MWCNTs-COOH@black phosphorene

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A label-free electrochemical immunosensor has advantages of real-time and rapid detection, but it is weak in detection of small molecular toxins such as aflatoxin B1 (AFB1). The greatest obstacle to achieving this is that small molecules bound to a common immunosensing interface cannot interfere with electron transfer effectively and the detection signal is so weak. Therefore, a sensitive electrochemical immunosensing interface for small molecules is urgently needed. Here, we employed functionalized black phosphorene (BP) as electrode modification materials and anti-AFB1 nanobody (Nb) as a biorecognition element to construct a very sensitive immunosensing interface towards small molecular AFB1. The BP functionalized by carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) via P–C bonding behaved with a satisfactory stability and good catalytic performance for the ferricyanide/ferrocyanide probe, while the small-sized Nb showed good compatibility with the functionalized BP and also had less influence on electron transfer than monoclonal antibody (mAb). Expectedly, the as-prepared immunosensing interface was very sensitive to AFB1 detection by differential pulse voltammetry (DPV) in a redox probe system. Under optimized conditions, a linear range from 1.0 pM to 5.0 nM and an ultralow detection limit of 0.27 pM were obtained. Additionally, the fabricated immunosensor exhibited satisfactory stability, specificity, and reproducibility. The strategy proposed here provides a more reliable reference for label-free sensing of small molecules in food samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst. 2020;145(22):7088–102.

    Article  CAS  PubMed  Google Scholar 

  3. Xing K-Y, Shan S, Liu D-F, Lai W-H. Recent advances of lateral flow immunoassay for mycotoxins detection. Trac-Trends Anal Chem. 2020;133:116087.

    Article  CAS  Google Scholar 

  4. He T, Wang Y, Li P, Zhang Q, Lei J, Zhang Z, et al. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Anal Chem. 2014;86(17):8873–80.

    Article  CAS  PubMed  Google Scholar 

  5. Su L, Tong P, Zhang L, Luo Z, Fu C, Tang D, et al. Photoelectrochemical immunoassay of aflatoxin B 1 in foodstuff based on amorphous TiO2 and CsPbBr 3 perovskite nanocrystals. Analyst. 2019;144(16):4880–6.

    Article  CAS  PubMed  Google Scholar 

  6. Yan C, Wang Q, Yang Q, Wu W. Recent advances in aflatoxins detection based on nanomaterials. Nanomaterials. 2020;10(9):1626.

    Article  CAS  PubMed Central  Google Scholar 

  7. Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta. 2016;912:10–23.

    Article  CAS  PubMed  Google Scholar 

  8. Felix FS, Angnes L. Electrochemical immunosensors – a powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Q, Tang D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC, Trends Analyt Chem. 2020;124:115814.

    Article  CAS  Google Scholar 

  10. Catanante G, Rhouati A, Hayat A, Marty JL. An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis. 2016;28(8):1750–63.

    Article  CAS  Google Scholar 

  11. Haab BB. Methods and applications of antibody microarrays in cancer research. Proteomics. 2003;3(11):2116–22.

    Article  CAS  PubMed  Google Scholar 

  12. Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis. 2007;19(12):1239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang D, Hu W, Xiong Y, Xu Y, Li CM. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B-1. Biosens Bioelectron. 2015;63:185–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kunene K, Weber M, Sabela M, Voiry D, Kanchi S, Bisetty K, et al. Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sens Actuators B-Chemical. 2020;305:127438.

    Article  CAS  Google Scholar 

  15. Huang Y, Zhu F, Guan J, Wei W, Zou L. Label-free amperometric immunosensor based on versatile carbon nanofibers network coupled with Au nanoparticles for aflatoxin B1 detection. Biosensors (Basel). 2021;11(1):5.

    Article  Google Scholar 

  16. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652–5.

    Article  CAS  PubMed  Google Scholar 

  17. Mao S, Chen J. Graphene-based electronic biosensors. J Mater Res. 2017;32(15):2954–65.

    Article  CAS  Google Scholar 

  18. Wang Y-H, Huang K-J, Wu X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron. 2017;97:305–16.

    Article  CAS  PubMed  Google Scholar 

  19. Sofer Z, Sedmidubsky D, Huber S, Luxa J, Bousa D, Boothroyd C, et al. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew Chem-Int Ed. 2016;55(10):3382–6.

    Article  CAS  Google Scholar 

  20. Xiang Y, Belen Camarada M, Wen Y, Wu H, Chen J, Li M, et al. Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochim Acta. 2018;282:490–8.

    Article  CAS  Google Scholar 

  21. Ge X, Xia Z, Guo S. Recent advances on black phosphorus for biomedicine and biosensing. Adv Func Mater. 2019;29(29):1900318.

    Article  Google Scholar 

  22. Peng J, Lai Y, Chen Y, Xu J, Sun L, Weng J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small. 2017;13(15):1603589.

    Article  Google Scholar 

  23. Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, et al. Recent progress on stability and passivation of black phosphorus. Adv Mater. 2018;30(29):1704749.

    Article  Google Scholar 

  24. Thurakkal S, Zhang X. Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv Sci. 2020;7(2):1902359.

    Article  CAS  Google Scholar 

  25. Chen X, Zhang J, Huang C, Wu Q, Wu J, Xia L, et al. Modification of black phosphorus nanosheets with a Ni-containing carbon layer as efficient and stable hydrogen production electrocatalysts. ACS Appl Mater Interfaces. 2020;12(49):54619–26.

    Article  CAS  PubMed  Google Scholar 

  26. WalzMitra KL, Chang CH, Hanrahan MP, Yang J, Tofan D, Holden WM, et al. Surface functionalization of black phosphorus with nitrenes: identification of P=N bonds by using isotopic labeling. Angew Chem-Int Ed. 2021;60(16):9127–34.

    Article  CAS  Google Scholar 

  27. Jakóbczyk P, Jakobczyk P, Kowalski M, Brodowski M, Dettlaff A, Dec B, et al. Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: a novel route towards Haemophilus Influenzae pathogen biosensing devices. Appl Surf Sci. 2021;539:148286.

    Article  Google Scholar 

  28. Krah S, Schroeter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol. 2016;38(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  29. Muyldermans S, Baral TN, Retarnozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1–3):178–83.

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Tang Z, Hu Z, Wang Y, Yang X, Mo F, et al. Natural single-domain antibody-nanobody: a novel concept in the antibody field. J Biomed Nanotechnol. 2018;14(1):1–19.

    Article  PubMed  Google Scholar 

  31. Bever CS, Dong J-X, Vasylieva N, Barnych B, Cui Y, Xu Z-L, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem. 2016;408(22):5985–6002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014;32(5):263–70.

    Article  PubMed  Google Scholar 

  33. Zhang C, Wu X, Li D, Hu J, Wan D, Zhang Z, et al. Development of nanobody-based flow-through dot ELISA and lateral-flow immunoassay for rapid detection of 3-phenoxybenzoic acid. Anal Methods. 2021;13(14):1757–65.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Wang D, Chu J, Xu Y, Wang W. Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity. J Pharm Biomed Anal. 2018;158:361–9.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Wen Y, Wang W, Zhao Z, Han Y, Tan K, et al. Nanobody-based electrochemical competitive immunosensor for the detection of AFB(1) through AFB(1)-HCR as signal amplifier. Microchim Acta. 2020;187(6):352.

    Article  CAS  Google Scholar 

  36. Saerens D, Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, et al. Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem. 2005;77(23):7547–55.

    Article  CAS  PubMed  Google Scholar 

  37. Pan D, Li G, Hu H, Xue H, Zhang M, Zhu M, et al. Direct immunoassay for facile and sensitive detection of small molecule aflatoxin B 1 based on nanobody. Chem Eur J. 2018;24(39):9869–76.

    Article  CAS  PubMed  Google Scholar 

  38. Mann FA, Lv Z, Grosshans J, Opazo F, Kruss S. Nanobody-conjugated nanotubes for targeted near-infrared in vivo imaging and sensing. Angew Chem Int Ed. 2019;58(33):11469–73.

    Article  CAS  Google Scholar 

  39. Kang J, Wood JD, Wells SA, Lee J-H, Liu X, Chen K-S, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano. 2015;9(4):3596–604.

    Article  CAS  PubMed  Google Scholar 

  40. Su S, Xu B, Ding J, Yu H. Large-yield exfoliation of few-layer black phosphorus nanosheets in liquid. New J Chem. 2019;43(48):19365–71.

    Article  CAS  Google Scholar 

  41. Hanlon D, Backes C, Doherty E, Cucinotta CS, Berner NC, Boland C, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun. 2015;6(1):8563.

    Article  CAS  PubMed  Google Scholar 

  42. Cai J, Gou X, Sun B, Li W, Li D, Liu J, et al. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin. Biosens Bioelectron. 2019;137:88–95.

    Article  CAS  PubMed  Google Scholar 

  43. Xue T, Sheng Y, Xu J, Li Y, Lu X, Zhu Y, et al. In-situ reduction of Ag+ on black phosphorene and its NH2-MWCNT nanohybrid with high stability and dispersibility as nanozyme sensor for three ATP metabolites. Biosens Bioelectron. 2019;145:111716.

    Article  CAS  PubMed  Google Scholar 

  44. Erande MB, Pawar MS, Late DJ. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl Mater Interfaces. 2016;8(18):11548–56.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, et al. Anchoring metallic MoS2 quantum dots over MWCNTs for highly sensitive detection of postharvest fungicide in traditional Chinese medicines. ACS Omega. 2021;6(2):1488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao D-M, Xu Y, Tu Z, Li Y-P, Xiong L, Fu J-H. One-step enzyme linked immunosorbent assay for detection of aflatoxin B-1 using a nanobody-alkaline phosphatase fusion protein. Chin J Anal Chem. 2016;44(7):1085–91.

    CAS  Google Scholar 

  47. Karaman C, Karaman O, Yola BB, Ulker I, Atar N, Yola ML. A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J Chem. 2021;45(25):11222–33.

    Article  CAS  Google Scholar 

  48. Wang H, Zhang Y, Chu Y, Ma H, Li Y, Wu D, et al. Disposable competitive-type immunoassay for determination of aflatoxin B1 via detection of copper ions released from Cu-apatite. Talanta. 2016;147:556–60.

    Article  CAS  PubMed  Google Scholar 

  49. Lin Y, Zhou Q, Tang D. Dopamine-loaded liposomes for in-situ amplified photoelectrochemical immunoassay of AFB(1) to enhance photocurrent of Mn2-doped Zn-3(OH)(2)V2O7 nanobelts. Anal Chem. 2017;89(21):11803–10.

    Article  CAS  PubMed  Google Scholar 

  50. Costa MP, Frias IAM, Andrade CAS, Oliveira MDL. Impedimetric immunoassay for aflatoxin B1 using a cysteine modified gold electrode with covalently immobilized carbon nanotubes. Microchim Acta. 2017;184(9):3205–13.

    Article  CAS  Google Scholar 

  51. Solanki PR, Singh J, Rupavali B, Tiwari S, Malhotra BD. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater Sci Eng, C Mater Biol Appl. 2017;70:564–71.

    Article  CAS  Google Scholar 

  52. Bhardwaj H, Marquette CA, Dutta P, Rajesh, Sumana G. Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection. Anal Bioanal Chem. 2020;412(25):7029–41.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31660492, 32060575, 32160602, 31860260) and the Natural Science Foundation of Jiangxi Province (20192ACBL20019, 20181BAB204017, 20171BAB214038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xue Zhang and Xiaoning Liao contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liao, X., Wu, Y. et al. A sensitive electrochemical immunosensing interface for label-free detection of aflatoxin B1 by attachment of nanobody to MWCNTs-COOH@black phosphorene. Anal Bioanal Chem 414, 1129–1139 (2022). https://doi.org/10.1007/s00216-021-03738-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03738-1

Keywords

Navigation