Skip to main content
Log in

Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Copper transporter 1 (CTR1) is a transport protein involved in copper and cisplatin uptake. The visualization of cellular CTR1 migration and its redistribution is highly important in copper/cisplatin exposure/transport. However, to the best of our knowledge, this is a highly challenging task. Herein, a dual-mode imaging strategy for CTR1 is developed by hyphenating confocal laser scanning microscopy (CLSM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with a fluorescent/elemental bifunctional tag conjugated with anti-CTR1 antibody. The tag consists of rhodamine B and zirconium metal-organic frameworks (Zr-MOF) for CLSM fluorescence imaging and LA-ICPMS element imaging for a same group of HepG2 cells in a designated visual zone. This dual-mode imaging strategy facilitates visualization of CTR1 migration and meanwhile provides information of CTR1 redistribution in HepG2 cells by uptake of divalent copper or cisplatin. The present dual-mode imaging strategy provides in-depth information for the elucidation of CTR1 involved biological processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J. Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem. 2014;406(27):6963–77.

    Article  CAS  Google Scholar 

  2. Heeren RMA. Getting the picture: the coming of age of imaging MS. Int J Mass Spectrom. 2015;377:672–80.

    Article  CAS  Google Scholar 

  3. Urbini M, Petito V, de Notaristefani F, Scaldaferri F, Gasbarrini A, Tortora L. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa. Anal Bioanal Chem. 2017;409(26):6097–111.

    Article  CAS  Google Scholar 

  4. Whelan DR, Lee WTC, Yin Y, Ofri DM, Bermudez-Hernandez K, Keegan S, et al. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun. 2018;9(1):3882.

    Article  Google Scholar 

  5. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):622–68.

    Article  Google Scholar 

  6. Pisonero J, Bouzas-Ramos D, Traub H, Cappella B, Álvarez-Llamas C, Richter S, et al. Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS. J Anal At Spectrom. 2019;34(4):655–63.

    Article  CAS  Google Scholar 

  7. Zhou SX, Deng CW, Xu P, Fan Q, Zhang XY, Jia YG, et al. Cellular metabolism of fluorescent nanoprobes formed by self-assembly of amphiphiles: dynamic trafficking from the Golgi apparatus to the lysosome. ACS Appl Bio Mater. 2019;2(12):5790–8.

    Article  CAS  Google Scholar 

  8. Skogs M, Stadler C, Schutten R, Hjelmare M, Gnann C, Bjork L, et al. Antibody validation in bioimaging applications based on endogenous expression of tagged proteins. J Proteome Res. 2017;16(1):147–55.

    Article  CAS  Google Scholar 

  9. Zhong SW, Li Z, Jiang T, Li XG, Wang HL. Immunofluorescence imaging strategy for evaluation of the accessibility of DNA 5-hydroxymethylcytosine in chromatins. Anal Chem. 2017;89(11):5702–6.

    Article  CAS  Google Scholar 

  10. Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi S, et al. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater. 2014;278:279–87.

    Article  CAS  Google Scholar 

  11. Lee RFS, Riedel T, Escrig S, Maclachlan C, Knott GW, Davey CA, et al. Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics. 2017;9(10):1413–20.

    Article  CAS  Google Scholar 

  12. Günther D, Hattendorf B. TrAC, solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC Trends Anal Chem. 2005;24(3):255–65.

    Article  Google Scholar 

  13. Resano M, García-Ruiz E, Alloza R, Marzo MP, Vandenabeele P, Vanhaecke F. Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art. Anal Chem. 2007;79:8947–55.

    Article  CAS  Google Scholar 

  14. Pisonero J, Koch J, Walle M, Hartung W, Spencer ND, Gunther D. Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings. Anal Chem. 2007;79:2325–33.

    Article  CAS  Google Scholar 

  15. Herrmann AJ, Techritz S, Jakubowski N, Haase A, Luch A, Panne U, et al. A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS. Analyst. 2017;142(10):1703–10.

    Article  CAS  Google Scholar 

  16. Theiner S, Schweikert A, Van Malderen SJM, Schoeberl A, Neumayer S, Jilma P, et al. Laser ablation-inductively coupled plasma time-of-flight mass spectrometry imaging of trace elements at the single-cell level for clinical practice. Anal Chem. 2019;91(13):8207–12.

    Article  CAS  Google Scholar 

  17. Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, et al. High-resolution imaging and single-cell analysis via laser ablation inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta. 2019;1074:43–53.

    Article  Google Scholar 

  18. Van Malderen SJ, Vergucht E, De Rijcke M, Janssen C, Vincze L, Vanhaecke F. Quantitative determination and subcellular imaging of Cu in single cells via laser ablation-ICP-mass spectrometry using high-density microarray gelatin standards. Anal Chem. 2016;88(11):5783–9.

    Article  Google Scholar 

  19. Zheng LN, Sang YB, Luo RP, Wang B, Yi FT, Wang M, et al. Determination of silver nanoparticles in single cells by microwell trapping and laser ablation ICP-MS determination. J Anal At Spectrom. 2019;34(5):915–21.

    Article  CAS  Google Scholar 

  20. Liu ZR, Li XT, Xiao GY, Chen BB, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review. TrAC Trends Anal Chem. 2017;93:78–101.

    Article  CAS  Google Scholar 

  21. Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR. Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res. 2016;49(5):775–83.

    Article  CAS  Google Scholar 

  22. Feng D, Tian F, Qin WJ, Qian XH. A dual-functional lanthanide nanoprobe for both living cell imaging and ICP-MS quantification of active protease. Chem Sci. 2016;7(3):2246–50.

    Article  CAS  Google Scholar 

  23. Liang Y, Jiang X, Yuan R, Zhou Y, Ji CX, Yang LM, et al. Metabolism-based click-mediated platform for specific imaging and quantification of cell surface sialic acids. Anal Chem. 2017;89(1):538–43.

    Article  CAS  Google Scholar 

  24. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev. 2016;45(8):2327–67.

    Article  CAS  Google Scholar 

  25. Zhang Z, Sang W, Xie L, Dai YL. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev. 2019;399:213022–47.

    Article  CAS  Google Scholar 

  26. Zhao HX, Zou Q, Sun SK, Yu C, Zhang X, Li RJ, et al. Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem Sci. 2016;7(8):5294–301.

    Article  CAS  Google Scholar 

  27. Li Y, Liu JT, Zhang KH, Lei L, Lei ZL. UiO-66-NH2@PMAA: a hybrid polymer−MOFs architecture for pectinase immobilization. Ind Eng Chem Res. 2018;57(2):559–67.

    Article  CAS  Google Scholar 

  28. Safaei R, Howell SB. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol. 2005;53(1):13–23.

    Article  Google Scholar 

  29. Kaplan JH, Maryon EB. How mammalian cells acquire copper: an essential but potentially toxic metal. Biophys J. 2016;110(1):7–13.

    Article  CAS  Google Scholar 

  30. Puig S, Lee J, Lau M, Thiele DJ. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem. 2002;277(29):26021–30.

    Article  CAS  Google Scholar 

  31. Petris MJ, Smith K, Lee J, Thiele DJ. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem. 2003;278(11):9639–46.

    Article  CAS  Google Scholar 

  32. Ishida S, McCormick F, Smith MK, Hanahan D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell. 2010;17(6):574–83.

    Article  CAS  Google Scholar 

  33. Fu S, Naing A, Fu C, Kuo MT, Kurzrock R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol Cancer Ther. 2012;11(6):1221–5.

    Article  CAS  Google Scholar 

  34. Liang ZD, Long Y, Tsai WB, Fu S, Kurzrock R, Gagea-Iurascu M, et al. Mechanistic basis for overcoming platinum resistance using copper chelating agents. Mol Cancer Ther. 2012;11(11):2483–94.

    Article  CAS  Google Scholar 

  35. Bompiani KM, Tsai CY, Achatz FP, Liebig JK, Howell SB. Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. Metallomics. 2016;8(9):951–62.

    Article  CAS  Google Scholar 

  36. Wang XH, Du XB, Li HY, Chan DSB, Sun HZ. The effect of the extracellular domain of human copper transporter (hCTR1) on cisplatin activation. Angew Chem Int Ed. 2011;50(12):2706–11.

    Article  CAS  Google Scholar 

  37. Cui H, Zhang AJ, McKeage MJ, Nott LM, Geraghty D, Guven N, et al. Copper transporter 1 in human colorectal cancer cell lines: effects of endogenous and modified expression on oxaliplatin cytotoxicity. J Inorg Biochem. 2017;177:249–58.

    Article  CAS  Google Scholar 

  38. Wang Y, Yu Y, Li R, Liu HJ, Zhang W, Ling LJ, et al. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO66-NH2 octahedrons. J Mater Chem A. 2017;5(38):20136–40.

    Article  CAS  Google Scholar 

  39. Molloy SA, Kaplan JH. Copper-dependent recycling of hCTR1, the human high affinity copper transporter. J Biol Chem. 2009;284(43):29704–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to the instrumental analysis from Analytical and Testing Center, Northeastern University.

Funding

This work received financial supports from the Natural Science Foundation of China (21675019, 21922402, 21874014, 21727811) and Fundamental Research Funds for the Central Universities (N2005003, N2005027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Li Chen or Jian-Hua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, QX., Wei, X., Zhang, SQ. et al. Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS. Anal Bioanal Chem 413, 1353–1361 (2021). https://doi.org/10.1007/s00216-020-03097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03097-3

Keywords

Navigation