Skip to main content
Log in

Directly transferring pepper constituents to triangular papers for pungency determination by paper spray ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method named imprint paper spray ionization mass spectrometry (imprint-PSI-MS) has been developed and employed for the determination of pungency of peppers. A pepper fruit was cut into a triangular shape, deposited onto a triangular paper, and compressed by a homemade press tool aiming to imprint and transfer the pepper constituents onto the paper surface. Subsequently, the triangular paper was submitted to conventional PSI-MS analysis. Twelve peppers were analyzed, ranging from highly pungent to lowly pungent taste. Pepper pungency values from the Scoville scale (in Scoville heat units, SHU) were compared with the ion intensities of the capsaicin and dihydrocapsaicin compounds obtained from the imprint-PSI-MS analysis, and a correlation coefficient of 0.97 was achieved. In addition, the ion intensities of a sugar compound were monitored in all peppers, and the results were compared with the Scoville scale. Low sugar ion intensities were detected in pungent peppers, while high ion intensities were achieved in low-pungent peppers, suggesting that the pepper pungency may be determined by inversely relating pungency to sugar contents. This work demonstrates the utility of the imprint-PSI-MS method to perform rapid qualitative analyses of peppers and estimate the pungency by monitoring the pepper metabolites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayes JE. Types of chemesthesis I. Pungency and burn: historical perspectives, word usage, and temporal characteristics. In: McDonald ST, Bolliet DA, Hayes JE, editors. Chemesthesis: chemical touch in food and eating. 1st ed. Hoboken: Wiley; 2016. p. 92–105.

    Google Scholar 

  2. Luo X-J, Peng J, Li Y-J. Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol. 2011;650:1–7.

    CAS  PubMed  Google Scholar 

  3. Appendino G. Capsaicin and capsaicinoids. In: Fattorusso E, Taglialatela-Scafati O, editors. Modern alkaloids: structure, isolation, synthesis and biology. 1st ed. Weinheim: Wiley-VCH; 2008. p. 73–109.

    Google Scholar 

  4. Yang F, Zheng J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017;8:169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayman M, Kam PCA. Capsaicin: a review of its pharmacology and clinical applications. Curr Anaesth Crit Care. 2008;19:338–43.

    Google Scholar 

  6. Kaiser M, Higuera I, Goycoolea FM. Capsaicinoids: occurrence, chemistry, biosynthesis, and biological effects. In: Yahia EM, editor. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Hoboken: Wiley; 2018. p. 499–513.

    Google Scholar 

  7. Patowary P, Pathak MP, Zaman K, Raju PS, Chattopadhyay P. Research progress of capsaicin responses to various pharmacological challenges. Biomed Pharmacother. 2017;96:1501–12.

    CAS  PubMed  Google Scholar 

  8. Scoville WL. Note on capsicums. J Am Pharm Assoc. 1912;1:453–4.

    CAS  Google Scholar 

  9. da Silva AA, Wiedemann LSM, da Veiga Junior VF. Food pungency: the evolution of methods for capsaicinoid analysis. Food Anal Methods. 2019;12:1327–45.

    Google Scholar 

  10. Cooks RG, Ouyang Z, Takats Z, Wiseman J. Ambient mass spectrometry. Science. 2006;311:1566–70.

    CAS  PubMed  Google Scholar 

  11. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.

    PubMed  Google Scholar 

  12. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302.

    CAS  PubMed  Google Scholar 

  13. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91:4266–90.

    CAS  PubMed  Google Scholar 

  14. Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z. Development characterization and application of paper spray ionization. Anal Chem. 2010;82:2463–71.

    CAS  PubMed  Google Scholar 

  15. Guo T, Yong W, Dong Y. Automatically high-throughput quantification by paper spray ionization mass spectrometry for multiple pesticides in wine. Food Anal Methods. 2019;12:1208–17.

    Google Scholar 

  16. Evard H, Kruve A, Lõhmus R, Leito I. Paper spray ionization mass spectrometry: study of a method for fast-screening analysis of pesticides in fruits and vegetables. J Food Compos Anal. 2015;41:221–5.

    CAS  Google Scholar 

  17. Basuri P, Sarkar D, Paramasivam G, Pradeep T. Detection of hydrocarbons by laser assisted paper spray ionization mass spectrometry (LAPSI MS). Anal Chem. 2018;90:4663–8.

    CAS  PubMed  Google Scholar 

  18. Damon DE, Davis KM, Moreira CR, Capone P, Cruttenden R, Badu-Tawiah AK. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal Chem. 2016;88:1878–84.

    CAS  PubMed  Google Scholar 

  19. Jett R, Skaggs C, Manicke N. Drug screening method development for paper spray coupled to a triple quadrupole mass spectrometer. Anal Methods. 2017;34:5037–43.

    Google Scholar 

  20. Chamberlain CA, Rubio VY, Garrett TJ. Strain-level differentiation of bacteria by paper spray ionization mass spectrometry. Anal Chem. 2019;91:4964–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Bai H, Li W, Wang C, Li X, Coos RG, et al. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system. Anal Chim Acta. 2016;912:65–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pereira I, Rodrigues MF, Chaves AR, Vaz BG. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta. 2018;178:507–14.

    CAS  PubMed  Google Scholar 

  23. Moura ACM, Lago IN, Cardoso CF, dos Reis NA, Pereira I, Vaz BG. Rapid monitoring of pesticides in tomatoes (Solanum lycopersicum L.) during pre-harvest intervals by paper spray ionization mass spectrometry. Food Chem. 2020;310:125938.

    PubMed  Google Scholar 

  24. Cody RB, Tamura J, Downard KM. Quantitation of anthocyanins in elderberry fruit extracts and nutraceutical formulations with paper spray ionization mass spectrometry. J Mass Spectrom. 2018;53:58–64.

    CAS  PubMed  Google Scholar 

  25. Liu X, Gu Z, Guo Y, Liu J, Ma M, Chen B, et al. Rapid analysis of Aurantii fructus immaturus (Zhishi) using paper spray ionization mass spectrometry. J Pharm Biomed Anal. 2017;137:204–12.

    CAS  PubMed  Google Scholar 

  26. Silva MR, Freitas LG, Souza AG, Araújo RLB, Lacerda ICA, Pereira HV, et al. Antioxidant activity and metabolomic analysis of cagaitas (Eugenia dysenterica) using paper spray mass spectrometry. J Braz Chem Soc. 2019;30:1034–44.

    CAS  Google Scholar 

  27. Sjovall P, Lausmaa J, Nygren H, Carlsson L, Malmberg P. Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem. 2003;75:3429–34.

    PubMed  Google Scholar 

  28. Vidova V, Novak P, Strohalm M, Pol J, Havlicek V, Volny M. Laser desorption-ionization of lipid transfers: tissue mass spectrometry imaging without MALDI matrix. Anal Chem. 2010;82:4994–7.

    CAS  PubMed  Google Scholar 

  29. Muller T, Oradu S, Ifa DR, Cooks RG, Krautler B. Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem. 2011;83:5754–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira I, de Carvalho TC, Romão W, Filgueiras PR, Laviola BG, Rodrigues CM, et al. Differentiation of toxic and non-toxic leaves of Jatropha curcas L. genotypes by leaf spray mass spectrometry. J Braz Chem Soc. 2017;28:1461–6.

    CAS  Google Scholar 

  31. Rosas J, Martínez JO, Alonso P, Miranda R, Velasco L, Rubio-Pérez L, et al. Alternative mass spectrometry techniques for the validation of the fragmentation pattern of capsaicin and dihydrocapsaicin. Rapid Commun Mass Spectrom. 2019;33:635–40.

    CAS  PubMed  Google Scholar 

  32. Lee TA. A beginner’s guide to mass spectral interpretation. 1st ed. Chichester: Wiley; 1998.

    Google Scholar 

  33. Reilly CA, Ehlhardt WJ, Jackson DA, Kulanthaivel P, Mutlib AE, Espina RJ, et al. Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Chem Res Toxicol. 2003;16:336–49.

    CAS  PubMed  Google Scholar 

  34. Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep. 2011;30:695–706.

    PubMed  Google Scholar 

  35. Reifschneider FJB. Capsicum: pimentas e pimentões no Brasil. 1st ed. Brasília: Embrapa Hortaliças; 2000.

    Google Scholar 

  36. Sweat KG, Broatch J, Borror C, Hagan K, Cahill TM. Variability in capsaicinoid content and Scoville heat ratings of commercially grown Jalapeño, Habanero and Bhut Jolokia peppers. Food Chem. 2016;210:606–12.

    CAS  PubMed  Google Scholar 

  37. Duelund L, Mouritsen OG. Contents of capsaicinoids in chillies grown in Denmark. Food Chem. 2017;221:913–8.

    CAS  PubMed  Google Scholar 

  38. Wu T, Yuan X, Wu X, Tang Y, Lin H, Che Z, et al. Rapid determination of capsaicin and dihydrocapsaicin in fermented pepper paste by direct analysis in real time mass spectrometry. Food Anal Methods. 2019;12:32–40.

    CAS  Google Scholar 

  39. Zhang Q, Liu X, Li Z, Su Y, Guo Y. Rapid quantitative analysis with low matrix effects of capsaicin in various samples by thermal desorption carbon fiber ionization mass spectrometry. Anal Chim Acta. 2019;1048:115–22.

    CAS  PubMed  Google Scholar 

  40. Jackson S, Swiner DJ, Capone PC, Badu-Tawiah AK. Thread spray mass spectrometry for direct analysis of capsaicinoids in pepper products. Anal Chim Acta. 2018;1023:81–8.

    CAS  PubMed  Google Scholar 

  41. de Aguiar AC, Coutinho JP, Barbero GF, Godoy HT, Martínez J. Comparative study of capsaicinoid composition in capsicum peppers grown in Brazil. Int J Food Prop. 2016;19:1292–302.

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES and SEDUC-Goiás for institutional support.

Funding

This study received financial support from CAPES and SEDUC-Goiás.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boniek G. Vaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 192 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, R.R.F., da Silva, L.C., Maciel, L.I.L. et al. Directly transferring pepper constituents to triangular papers for pungency determination by paper spray ionization mass spectrometry. Anal Bioanal Chem 412, 5389–5396 (2020). https://doi.org/10.1007/s00216-020-02755-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02755-w

Keywords

Navigation