Skip to main content
Log in

Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new straightforward gel permeation chromatography (GPC) method was developed to calculate the drug encapsulation efficiency and loading content of Poly(lactic acid) nanoparticles (PLA NPs) loaded with Salinomycin (Sal), exploiting the capability of this technique to separate a macromolecular/molecular mixture on the basis of the molecular weight of each component. The proposed GPC method allowed Sal detection until 1% of Sal content in PLA NPs, avoiding sample pre-treatments. The method was validated by wave voltammetry (SW) technique, using a slightly modified literature procedure, useful to detect Sal in the concentration range 0.4 ≤ C/μmol/L ≤ 12 (linear concentration range). PLA-based NPs were prepared by nanoprecipitation with either native and functionalized PLA. Specifically, folate-decorated PLA NPs (PLA-FA NPs) were obtained by CuAAC click functionalization of alkyne-grafted PLA with azide-folate. Sal-loaded NPs were characterized physicochemically and morphologically. They exhibited adequate physicochemical properties, good drug encapsulation efficiency (98 ± 0.5% and 99 ± 0.5%), and loading content (8.8 ± 0.1% and 8.9 ± 0.1% for PLA/Sal and PLA-FA/Sal NPs, respectively). The size of empty PLA NPs resulted smaller (90 ± 3.2 nm and 680 ± 15.3 nm, for PLA NPs and PLA-FA NPs respectively) than the correspondent drug-loaded NPs (110 ± 3.8 nm and 875 ± 20.5 nm, respectively). Their biological activity was assessed on osteosarcoma bulk cells MG63, healthy osteoblast cell line (hFOB1.19), and enriched osteosarcoma cancer stem cells (CSCs), showing cell-depending effect. Entrapped Sal maintained its cytotoxic effect on CSCs and MG63 cells, with a potency comparable to the free drug and no evident benefit was detected for folate-decorated PLA NPs respect to native PLA NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta PB, Onder TT, Jiang GZ, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–9.

    Article  CAS  Google Scholar 

  2. Kuşoğlu A, Biray AÇ. Cancer stem cells: a brief review of the current status. Gene. 2019;681:80–5.

    Article  Google Scholar 

  3. Cancer Stem Cell Therapies Market, 2017-2030, 2017, ID 4457268

  4. Dewangan J, Srivastava S, Rath SK. Salinomycin: a new paradigm in cancer therapy. Tumor Biol. 2017;39:1–12.

    Article  Google Scholar 

  5. Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012; Article ID 950658.

  6. Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun. 2010;394:1098–104.

    Article  CAS  Google Scholar 

  7. Tang QL, Zhao ZQ, Li JC, Liang Y, Yin JQ, Zou CY, et al. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett. 2011;311:113–21.

    Article  CAS  Google Scholar 

  8. Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4:25–43.

    Article  Google Scholar 

  9. Jaffe N. Recent advances in the chemotherapy of metastatic osteogenic sarcoma. Cancer. 1972;30:1627–31.

    Article  CAS  Google Scholar 

  10. Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3:221–43.

    Article  Google Scholar 

  11. Dai X, Ma W, He X, Jha RK. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011;17:RA177–90.

    Article  CAS  Google Scholar 

  12. Piperno A, Marrazzo A, Scala A, Rescifina A. Chemistry and biology of salinomycin and its analogues. In: Attanasi OA, Merino P, Spinelli D, editors. Targets in heterocyclic systems, 19. Roma: Società Chimica Italiana; 2015. p. 177–213.

    Google Scholar 

  13. Nász S, Debreczeni L, Rikker T, Eke Z. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of eleven coccidiostats in milk. Food Chem. 2012;133:536–43.

    Article  Google Scholar 

  14. Rokka M, Jestoi M, Peltonen K. Trace level determination of polyether ionophores in feed. BioMed Res Int 2013;2013:Article ID 151363.

  15. Pereira MU, Spisso BF, Jacob Sdo C, Monteiro MA, Ferreira RG, Carlos Bde S, et al. Validation of a liquid chromatography–electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk. Food Chem. 2016;196:130–7.

    Article  CAS  Google Scholar 

  16. Moloney M, Clarke L, O'Mahony J, Gadaj A, O'Kennedy R, Danaher M. Determination of 20 coccidiostats in egg and avian muscle tissue using ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1253:94–104.

    Article  CAS  Google Scholar 

  17. Rudnicki K, Domagała S, Burnat B, Skrzypek S. Voltammetric and corrosion studies of the ionophoric antibiotic-salinomycin and its determination in a soil extract. J Electroanal Chem. 2016;783:56–62.

    Article  CAS  Google Scholar 

  18. Zhou J, Sun J, Chen H, Peng Q. Promoted delivery of salinomycin sodium to lung cancer cells by dual targeting PLGA hybrid nanoparticles. Int J Oncol. 2018;53:1289–300.

    CAS  PubMed  Google Scholar 

  19. Chen F, Zeng Y, Qi X, Chen Y, Ge Z, Jiang Z, et al. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipidpolymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomed Nanotechnol. 2018;14:2115–27.

    Article  CAS  Google Scholar 

  20. Mi Y, Huang Y, Deng J. The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncol Lett. 2018;15:6611–21.

    PubMed  PubMed Central  Google Scholar 

  21. Yu Z, Chen F, Qi X, Dong Y, Zhang Y, Ge Z, et al. Epidermal growth factor receptor aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin delivery to osteosarcoma and cancer stem cells. Exp Ther Med. 2018;15:1247–56.

    CAS  PubMed  Google Scholar 

  22. Daman Z, Faghihi H, Montazeri H. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer. Drug Dev Ind Pharm. 2018;44:1434–42.

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhang Q, Sun J, Liu H, Li Q. The combination therapy of salinomycin and gefitinib using poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles for targeting both lung cancer stem cells and cancer cells. OncoTargets Ther. 2017;10:5653–66.

    Article  Google Scholar 

  24. Aydın RST, Kaynak G, Gumusderelioglu M. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. J Biomed Mater Res A. 2016;104A:455–64.

    Article  Google Scholar 

  25. Mathur AK. Determination of salinomycin by high-performance liquid chromatography using a precolumn derivatization technique. J Chromatogr A. 1994;664:284–8.

    Article  CAS  Google Scholar 

  26. Wang Q, Wu P, Ren W, Xin K, Yang Y, Xie C, et al. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Res Lett. 2014;9:351.

    Article  Google Scholar 

  27. Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B. 2016;143:532–46.

    Article  CAS  Google Scholar 

  28. Fazio E, Scala A, Grimato S, Ridolfo A, Grassi G, Neri F. Laser light friggere smart release of silibinin from a PEGylated-PLGA gold nanocomposite. J Mater Chem B. 2015;3:9023–32.

    Article  CAS  Google Scholar 

  29. Micale N, Piperno A, Mahfoudh N, Schurigt U, Schultheis M, Mineo PG, et al. A hyaluronic acid–pentamidine bioconjugate as a macrophage mediated drug targeting delivery system for the treatment of leishmaniasis. RSC Adv. 2015;5:95545–50.

    Article  CAS  Google Scholar 

  30. Neri F, Scala A, Grimato S, Santoro M, Spadaro S, Barreca F, et al. Biocompatible silver nanoparticles embedded in a PEG-PLA polymeric matrix for stimulated laser light drug release. J Nanopart Res. 2016;18:153–68.

    Article  Google Scholar 

  31. Spadaro S, Santoro M, Barreca F, Scala A, Grimato S, Neri F, et al. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications. Front Phys. 2018;13:136201–9.

    Article  Google Scholar 

  32. Scala A, Piperno A, Micale N, Mineo PG, Abbadessa A, Risoluti R, et al. “Click” on PLGA-PEG and hyaluronic acid:gaining access to anti-leishmanial pentamidine bioconjugates. J Biomed Mater Res Part B. 2018;106:2778–85.

    Article  CAS  Google Scholar 

  33. Scala A, Piperno A, Torcasio SM, Nicosia A, Mineo PG, Grassi G. “Clickable” polylactic acids obtained by solvent free intra-chain amidation. Eur Polym J. 2018;109:341–6.

    Article  CAS  Google Scholar 

  34. Piperno A, Zagami R, Cordaro A, Pennisi R, Musarra-Pizzo M, Scala A, et al. Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. J Incl Phenom Macrocycl Chem. 2019;93:33–40.

    Article  CAS  Google Scholar 

  35. You H, Fu S, Qin X, Yu Y, Yang B, Zhang G, et al. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma. Colloids Surf B: Biointerfaces. 2016;140:150–60.

    Article  CAS  Google Scholar 

  36. Oh JH, Park DH, Joo JH, Lee JS. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem. 2015;407:8627–45.

    Article  CAS  Google Scholar 

  37. Dorgan JR, Janzen J, Knauss DM, Hait SB, Limoge BR, Hutchinson MH. Fundamental solution and single-chain properties of polylactides. J Polym Sci B Polym Phys. 2005;43:3100–11.

    Article  CAS  Google Scholar 

  38. Lienard R, Montesi M, Panseri S, Dozio SM, Vento F, Mineo PG, Piperno A, De Winter J, Coulembier O, Scala A. Design of naturally inspired jellyfish-shaped cyclo-polylactides to manage osteosarcoma cancer stem cells fate. Mat Sci Eng C, submitted.

  39. Wang Y, Yao J, Meng H, Yu Z, Wang Z, Yuan X, et al. A novel long non-coding RNA, hypoxia-inducible factor-2α promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro. Mol Med Rep. 2015;11:2534–40.

    Article  CAS  Google Scholar 

  40. Tirino V, Desiderio V, d'Aquino R, De Francesco F, Pirozzi G, Graziano A, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One. 2008;3:e3469.

    Article  Google Scholar 

  41. Silva FRN, Bortolotte AR, Braga PA d C, Reyes FGR, Arisseto-Bragotto AP. Polyether ionophores residues in Minas Frescal cheese by UHPLC-MS/MS. Food Addit Contam Part B Surveill. 2020. https://doi.org/10.1080/19393210.2020.1739149.

  42. Determination of eight coccidiostats in eggs by liquid–liquid extraction–solid-phase extraction and liquid chromatography–tandem mass spectrometry. Molecules 2020;25:987.

  43. Kharbanda S, Hill J, Appajosyulan S, Rosenberg M, Singh H. Polymeric nanoparticles comprising salinomycin for treatment of cancer with reduced toxicity. Publication number: 20200046648.

  44. Santos C, Gomes P, Duarte JA, Almeida MM, Costa ME, Fernandes MH. Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation. Int J Pharm. 2017;516:185–95.

    Article  CAS  Google Scholar 

  45. Martín-del-Campo M, Sampedro JG, Flores-Cedillo ML, Rosales-Ibañez R, Rojo L. Bone regeneration induced by strontium folate loaded biohybrid scaffolds. Molecules. 2019;24:E1660.

    Article  Google Scholar 

  46. Liu Y, Xu C, Fan X, Loh XJ, Wu Y-L, Li Z. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery. Mater Sci Eng C. 2020;108:110464.

    Article  CAS  Google Scholar 

  47. Zagami R, Rapozzi V, Piperno A, Scala A, Triolo C, Trapani M, et al. Folate-decorated amphiphilic cyclodextrins as cell-targeted nanophototherapeutics. Biomacromolecules. 2019;20:2530–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Scala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineo, P.G., Foti, C., Vento, F. et al. Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal Bioanal Chem 412, 4681–4690 (2020). https://doi.org/10.1007/s00216-020-02721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02721-6

Keywords

Navigation