Skip to main content
Log in

Accurate estimation of diffusion coefficient for molecular identification in a complex background

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To eliminate the effects of complex background signals and to enhance the accuracy of the diffusion coefficient measurement, derivative NMR spectroscopy with negligible loss of the spectral quality is introduced based on the customized Savitzky-Golay method and used to construct diffusion-ordered NMR spectroscopy (DOSY). The criterion of the method was established by simulations. The application of this method on mouse urine and serum showed that the accuracy and precision of diffusion coefficient measurements in a complex background were improved to enhance the identification of molecules.

Diffusion-ordered NMR spectroscopy is a powerful tool for analyzing complex mixtures. To improve the accuracy of diffusion coefficient measurement, the magnitude of complex derivative spectra is introduced as a post-processing method to eliminate the effects of background signals, broad signals, or distorted baseline. And thus, accurate estimate of the diffusion coefficient is ensured to enhance the molecule identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morris KF, Johnson CS. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc. 1992;114(8):3139–41.

    CAS  Google Scholar 

  2. Morris KF, Johnson CS. Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc. 1993;115(10):4291–9.

    CAS  Google Scholar 

  3. Stilbs P. Molecular self-diffusion coefficients in Fourier transform nuclear magnetic resonance spectrometric analysis of complex mixtures. Anal Chem. 1981;53(13):2135–7.

    CAS  Google Scholar 

  4. Yuan B, Ding Y, Kamal GM, Shao L, Zhou Z, Jiang B, et al. Reconstructing diffusion ordered NMR spectroscopy by simultaneous inversion of Laplace transform. J Magn Reson. 2017;278:1–7.

    CAS  PubMed  Google Scholar 

  5. Colbourne AA, Morris GA, Nilsson M. Local covariance order diffusion-ordered spectroscopy: a powerful tool for mixture analysis. J Am Chem Soc. 2011;133(20):7640–3.

    CAS  PubMed  Google Scholar 

  6. Liu ML, Nicholson JK, London JC. High-resolution diffusion and relaxation edited one- and two-dimensional H-1 NMR spectroscopy of biological fluids. Anal Chem. 1996;68(19):3370–6.

    CAS  PubMed  Google Scholar 

  7. Liu ML, Tang HR, Nicholson JK, Lindon JC. Use of H-1 NMR-determined diffusion coefficients to characterize lipoprotein fractions in human blood plasma. Magn Reson Chem. 2002;40:S83–S8.

    CAS  Google Scholar 

  8. Du YY, Lan WX, Ji ZS, Zhang X, Jiang B, Zhou X, et al. NMR spectroscopic approach reveals metabolic diversity of human blood plasma associated with protein-drug interaction. Anal Chem. 2013;85(18):8601–8.

    CAS  PubMed  Google Scholar 

  9. Evans R, Day IJ. Matrix-assisted diffusion-ordered spectroscopy. RSC Adv. 2016;6(52):47010–22.

    CAS  Google Scholar 

  10. Caldarelli S. Chromatographic NMR. Annu Rep NMR Spectrosc. 2011;73:159–73.

    CAS  Google Scholar 

  11. Barhoum S, Palit S, Yethiraj A. Diffusion NMR studies of macromolecular complex formation, crowding and confinement in soft materials. Prog Nucl Magn Reson Spectrosc. 2016;94:1–10.

    PubMed  Google Scholar 

  12. Peresada S, Tonielli A, Morici R, Johnson CS. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc. 1999;34(3):203–56.

    Google Scholar 

  13. Lin MF, Shapiro MJ. Mixture analysis in combinatorial chemistry. Application of diffusion-resolved NMR spectroscopy. J Organomet Chem. 1996;61(21):7617–9.

    CAS  Google Scholar 

  14. Leon M, Smith ADM, Cloarec O, et al. Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem. 2007;79:5682–9.

    Google Scholar 

  15. Morris GA. Diffusion-ordered spectroscopy. In: Morris GA, Emsley JW, editors. Multidimensional NMR methods for the solution state; 2010. p. 515–32.

    Google Scholar 

  16. Nilsson M, Gil AM, Delgadillo I, Morris GA. Improving pulse sequences for 3D DOSY: COSY-IDOSY. Chem Commun. 2005;13:1737–9.

    Google Scholar 

  17. Nilsson M, Gil AM, Delgadillo I, Morris GA. Improving pulse sequences for 3D diffusion-ordered NMR spectroscopy: 2DJ-IDOSY. Anal Chem. 2004;76(18):5418–22.

    CAS  PubMed  Google Scholar 

  18. Vitorge B, Jeanneat D. NMR diffusion measurements in complex mixtures using constant-time-HSQC-IDOSY and computer-optimized spectral aliasing for high resolution in the carbon dimension. Anal Chem. 2006;78(15):5601–6.

    CAS  PubMed  Google Scholar 

  19. Viel S, Caldarelli S. Improved 3D DOSY-TOCSY experiment for mixture analysis. Chem Commun. 2008;17:2013–5.

    Google Scholar 

  20. Jerschow A, Müller N. 3D diffusion-ordered TOCSY for slowly diffusing molecules. J Magn Reson Ser A. 1996;123(2):222–5.

    Google Scholar 

  21. Pudakalakatti SM, Chandra K, Thirupathi R, Atreya HS. Rapid characterization of molecular diffusion by NMR spectroscopy. Chem Eur J. 2014;20(48):15719–22.

    CAS  PubMed  Google Scholar 

  22. Stilbs P, Paulsen K, Griffiths PC. Global least-squares analysis of large, correlated spectral data sets: application to component-resolved FT-PGSE NMR spectroscopy. J Phys Chem. 1996;100(20):8180–9.

    CAS  Google Scholar 

  23. Nilsson M, Morris GA. Speedy component resolution: an improved tool for processing diffusion-ordered spectroscopy data. Anal Chem. 2008;80(10):3777–82.

    CAS  PubMed  Google Scholar 

  24. Stilbs P. RECORD processing – a robust pathway to component-resolved HR-PGSE NMR diffusometry. J Magn Reson. 2010;207(2):332–6.

    CAS  PubMed  Google Scholar 

  25. Stilbs P. Automated CORE, RECORD, and GRECORD processing of multi-component PGSE NMR diffusometry data. Eur Biophys J. 2013;42(1):25–32.

    PubMed  Google Scholar 

  26. Colbourne AA, Meier S, Morris GA, Nilsson M. Unmixing the NMR spectra of similar species - vive la différence. Chem Commun. 2013;49(89):10510–2.

    CAS  Google Scholar 

  27. Windig W, Antalek B. Direct exponential curve resolution algorithm (DECRA): a novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles. Chemom Intell Lab Syst. 1997;37(2):241–54.

    CAS  Google Scholar 

  28. Antalek B, Windig W. Generalized rank annihilation method applied to a single multicomponent pulsed gradient spin echo NMR data set. J Am Chem Soc. 1996;118(42):10331–2.

    CAS  Google Scholar 

  29. Huo R, Wehrens R, Buydens LMC. Improved DOSY NMR data processing by data enhancement and combination of multivariate curve resolution with non-linear least square fitting. J Magn Reson. 2004;169(2):257–69.

    CAS  PubMed  Google Scholar 

  30. Van Gorkom LCM, Hancewicz TM. Analysis of DOSY and GPC-NMR experiments on polymers by multivariate curve resolution. J Magn Reson. 1998;130(1):125–30.

    PubMed  Google Scholar 

  31. Zhong J, DiDonato N, Hatcher PG. Independent component analysis applied to diffusion-ordered spectroscopy: separating nuclear magnetic resonance spectra of analytes in mixtures. J Chemom. 2012;26(5):150–7.

    CAS  Google Scholar 

  32. Toumi I, Torresani B, Caldarelli S. Effective processing of pulse field gradient NMR of mixtures by blind source separation. Anal Chem. 2013;85(23):11344–51.

    CAS  PubMed  Google Scholar 

  33. Yin PH, Sun YC, Xin J. A geometric blind source separation method based on facet component analysis. SIViP. 2016;10(1):19–28.

    Google Scholar 

  34. Zhang X, Li CG, Ye CH, Liu ML. Determination of molecular self-diffusion coefficient using multiple spin-echo NMR spectroscopy with removal of convection and background gradient artifacts. Anal Chem. 2001;73(15):3528–34.

    CAS  PubMed  Google Scholar 

  35. Pelantová H, Bugáňová M, Anýž J, Železná B, Maletínská L, Novák D, et al. Strategy for NMR metabolomic analysis of urine in mouse models of obesity-- from sample collection to interpretation of acquired data. J Pharm Biomed Anal. 2015;115:225–35.

    PubMed  Google Scholar 

  36. Beumers P, Engel D, Brands T, Koß HJ, Bardow A. Robust analysis of spectra with strong background signals by first-derivative indirect hard modeling (FD-IHM). Chemom Intell Lab Syst. 2018;172:1–9.

    CAS  Google Scholar 

  37. Rohnisch HE, Eriksson J, Mullner E, Agback P, Sandstrom C, Moazzami AA. AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem. 2018;90(3):2095–102.

    PubMed  Google Scholar 

  38. Tardivel PJC, Canlet C, Lefort G, Tremblay-Franco M, Debrauwer L, Concordet D, et al. ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics. 2017;13(10):109.

    Google Scholar 

  39. Hao J, Astle W, De Iorio M, Ebbels TMD. BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics. 2012;28(15):2088–90.

    CAS  PubMed  Google Scholar 

  40. Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10(5):e0124219.

    PubMed  PubMed Central  Google Scholar 

  41. Bradley SA, Smitka TA, Russell DJ, Krishnamurthy K. Quantitative NMR analysis of complex mixtures using CRAFT (complete reduction to amplitude frequency table) method. Current Metabolomics. 2015;3(1):21–31.

    CAS  Google Scholar 

  42. Verhoeven A, Slagboom E, Wuhrer M, Giera M, Mayboroda OA. Automated quantification of metabolites in blood-derived samples by NMR. Anal Chim Acta. 2017;976:52–62.

    CAS  PubMed  Google Scholar 

  43. Filntisi A, Fotakis C, Asvestas P, Matsopoulos GK, Zoumpoulakis P, Cavouras D. Automated metabolite identification from biological fluid H-1 NMR spectra. Metabolomics. 2017;13(12).

  44. Jung Y-S, Hyeon J-S, Hwang G-S. Software-assisted serum metabolite quantification using NMR. Anal Chim Acta. 2016;934:194–202.

    CAS  PubMed  Google Scholar 

  45. Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR. 2011;49(3):307–23.

    CAS  PubMed  Google Scholar 

  46. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78:4430–42.

    CAS  PubMed  Google Scholar 

  47. Tiainen M, Soininen P, Laatikainen R. Quantitative quantum mechanical spectral analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids. J Magn Reson 2014;242(0):67–78.

  48. Barak P. Smoothing and differentiation by an adaptive-degree polynomial filter. Anal Chem. 1995;67(17):2758–62.

    CAS  Google Scholar 

  49. Pearce JT, Athersuch TJ, Ebbels TM, et al. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum. Anal Chem. 2008;80:7158–62.

    CAS  PubMed  Google Scholar 

  50. Bao Q, Feng J, Chen L, Chen F, Liu Z, Jiang B, et al. A robust automatic phase correction method for signal dense spectra. J Magn Reson. 2013;234:82–9.

    CAS  PubMed  Google Scholar 

  51. Li YL, Ding YQ, Li T. Nonlinear diffusion filtering for peak-preserving smoothing of a spectrum signal. Chemom Intell Lab Syst. 2016;156:157–65.

    CAS  Google Scholar 

  52. Shao XG, Ma CX. A general approach to derivative calculation using wavelet transform. Chemom Intell Lab Syst. 2003;69(1–2):157–65.

    CAS  Google Scholar 

  53. Stickel JJ. Data smoothing and numerical differentiation by a regularization method. Comput Chem Eng. 2010;34(4):467–75.

    CAS  Google Scholar 

  54. Bustacara-Medina C, Florez-Valencia L. Comparison and evaluation of first derivatives estimation. In: Chmielewski LJ, Datta A, Kozera R, Wojciechowski K, editors. Computer vision and graphics, Iccvg 2016. Lecture notes in computer science. 99722016. p. 121–33.

  55. Luo JW, Ying K, He P, Bai J. Properties of Savitzky-Golay digital differentiators. Digit Signal Prog. 2005;15(2):122–36.

    Google Scholar 

  56. Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115(2):260–4.

    CAS  Google Scholar 

  57. Nilsson M. The DOSY toolbox: a new tool for processing PFG NMR diffusion data. J Magn Reson. 2009;200(2):296–302.

    CAS  PubMed  Google Scholar 

  58. Liu M, Nicholson JK, Lindon JC. High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem. 1996;68(19):3370–6.

    CAS  PubMed  Google Scholar 

  59. Zhang Y, Li W, Sun J, Zhang R, Wu B, Zhang X, et al. NMR-based metabolic profiling for serum of mouse exposed to source water. Ecotoxicology. 2011;20(5):1065–70.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Liming Zhang for providing the mouse urine and serum samples for the experiment.

Funding

This research was funded by the National Key R&D Program of China (2018YFA0704002, 2018YFE0202300, 2017YFA0505400), National Natural Science Foundation of China (21735007, 21675170, 21475146), CAS Key Research Program of Frontier Sciences (QYZDJ-SSW-SLH027), and K.C. Wong Educational Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Jiang or Maili Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 655 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Zhang, X., Kamal, G.M. et al. Accurate estimation of diffusion coefficient for molecular identification in a complex background. Anal Bioanal Chem 412, 4519–4525 (2020). https://doi.org/10.1007/s00216-020-02693-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02693-7

Keywords

Navigation