Skip to main content

Advertisement

Log in

Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study was the first attempt to optimize a recombinase polymerase amplification (RPA) and lateral flow (LF) assay combined with immunomagnetic separation (IMS) for the detection of Vibrio parahaemolyticus in raw oysters. The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Under optimal conditions, the average capture efficiency (CE) for 104 colony forming units (CFU)/mL of four V. parahaemolyticus strains with 0.4 mg of immunomagnetic beads within 45 min was 80.3%. After optimization, the RPA-LF assay was able to detect V. parahaemolyticus within 15 min, comprising DNA amplification with RPA for 10 min at 37 °C and visualization of the amplicons through LF strips for 5 min. The RPA-LF assay exhibited good specificity by showing a test line for eight V. parahaemolyticus strains with different serotypes but no cross-reaction with 12 non-V. parahaemolyticus bacteria. RPA-LF assay was found to be sensitive and detected as low as 10 pg genomic DNA of V. parahaemolyticus. For spiked oyster samples, the detection sensitivity of V. parahaemolyticus was improved to 2 CFU/g by IMS-RPA-LF after enrichment for 4 h; in contrast, the IMS-PCR method required 8 h. Hence, even when V. parahaemolyticus was present in very low numbers in samples, the IMS-RPA-LF assay could be completed within half a workday. Because of the high sensitivity, specificity, and speed of the IMS-RPA-LF assay, this newly developed method opens a novel pathway for rapid diagnostic screening of V. parahaemolyticus in seafood, which is an increasingly important health issue worldwide.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang W, Han X, Wang Q, Li XT, Yi L, Liu YJ, et al. Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen. Appl Microbiol Biotechnol. 2014;98(11):4937–48.

    Article  CAS  Google Scholar 

  2. Yang C, Zhang X, Fan H, Li Y, Hu Q, Yang R, et al. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol. 2019;84:103270.

    Article  Google Scholar 

  3. Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic V. parahaemolyticus virulence factors. Front Cell Infect Microbiol. 2013;3:97.

    Article  CAS  Google Scholar 

  4. Sakata J, Yonekita T, Kawatsu K. Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus. Int J Food Microbiol. 2018;264:16–24.

    Article  CAS  Google Scholar 

  5. He P, Chen Z, Luo J, Wang H, Yan Y, Chen L, et al. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains. Mol Cell Probes. 2014;28(5–6):246–50.

    Article  CAS  Google Scholar 

  6. Bauer A, Rørvik LM. A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholera and Vibrio vulnificus. Lett Appl Microbiol. 2007;45(4):371–5.

    Article  CAS  Google Scholar 

  7. Kim HJ, Ryu JO, Lee SY, Kim ES, Kim HY. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol. 2015;15:239.

    Article  CAS  Google Scholar 

  8. Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron. 2017;98:494–506.

    Article  CAS  Google Scholar 

  9. Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta. 2015;853:30–45.

    Article  CAS  Google Scholar 

  10. James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89.

    Article  CAS  Google Scholar 

  11. Ma B, Fang J, Lin W, Yu X, Sun C, Zhang M. A simple and efficient method for potential point-of-care diagnosis of human papillomavirus genotypes: combination of isothermal recombinase polymerase amplification with lateral flow dipstick and reverse dot blot. Anal Bioanal Chem. 2019;411(28):7451–60.

    Article  CAS  Google Scholar 

  12. Daher RK, Stewart G, Boissinot M, Bergeron MG. Recombinase polymerase amplification for diagnostic applications. Clin Chem. 2016;62(7):947–8.

    Article  CAS  Google Scholar 

  13. Lei R, Kong J, Qiu Y, Chen N, Zhu S, Wang X, et al. Rapid detection of the pathogenic fungi causing blackleg of Brassica napus using a portable real-time fluorescence detector. Food Chem. 2019;288:57–67.

    Article  CAS  Google Scholar 

  14. Li J, Macdonald J, von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 2018;144(1):31–67.

    Article  Google Scholar 

  15. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393:569–82.

    Article  CAS  Google Scholar 

  16. Wu YD, Xu MJ, Wang QQ, Zhou CX, Wang M, Zhu XQ, et al. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Vet Parasitol. 2017;243:199–203.

    Article  CAS  Google Scholar 

  17. Wang ZH, Wang XJ, Hou SH. Development of a recombinase polymerase amplification assay with lateral flow dipstick for rapid detection of feline parvovirus. J Virol Methods. 2019;271:113679.

    Article  CAS  Google Scholar 

  18. Eid C, Santiago JG. Assay for Listeria monocytogenes cells in whole blood using isotachophoresis and recombinase polymerase amplification. Analyst. 2016;142(1):48–54.

    Article  Google Scholar 

  19. Hice SA, Clark KD, Anderson JL, et al. Capture, concentration, and detection of Salmonella in foods using magnetic ionic liquids and recombinase polymerase amplification. Anal Chem. 2019;91(1):1113–20.

    Article  CAS  Google Scholar 

  20. Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48:11.

    Article  CAS  Google Scholar 

  21. Schaumburg F, Carrell CS, Henry CS. Rapid bacteria detection at low concentrations using sequential immunomagnetic separation and paper-based isotachophoresis. Anal Chem. 2019;91(15):9623–30.

    Article  CAS  Google Scholar 

  22. Amoako KK, Shields MJ, Goji N, Paquet C, Thomas MC, Janzen TW, et al. Rapid detection and identification of Yersinia pestis from food using immunomagnetic separation and pyrosequencing. J Pathog. 2012;781652.

  23. Kraft AL, Lacher DW, Shelver WL, Sherwood JS, Bergholz TM. Comparison of immunomagnetic separation beads for detection of six non-O157 Shiga toxin-producing Escherichia coli serogroups in different matrices. Lett Appl Microbiol. 2017;65(3):213–9.

    Article  CAS  Google Scholar 

  24. Li J, Liu Q, Wan Y, Wu X, Yang Y, Zhao R, et al. Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Anal Bioanal Chem. 2019;411(23):6067–80.

    Article  CAS  Google Scholar 

  25. Garrido-Maestu A, Azinheiro S, Carvalho J, Prado M. Combination of immunomagnetic separation and real-time recombinase polymerase amplification (IMS-qRPA) for specific detection of Listeria monocytogenes in smoked salmon samples. J Food Sci. 2019;84(7):1881–7.

    Article  CAS  Google Scholar 

  26. Zeng J, Wei H, Zhang L, Liu X, Zhang H, Cheng J, et al. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification. Int J Food Microbiol. 2014;174:123–8.

    Article  CAS  Google Scholar 

  27. Datta S, Janes ME, Simonson JG. Immunomagnetic separation and coagglutination of Vibrio parahaemolyticus with anti-flagellar protein monoclonal antibody. Clin Vaccine Immunol. 2008;15:1541–6.

    Article  CAS  Google Scholar 

  28. Tu S-I, Reed S, Gehring A, He Y, Paoli G. Capture of Escherichia coli O157:H7 using immunomagnetic beads of different size and antibody conjugating chemistry. Sensors (Basel). 2009;9:717–30.

    Article  CAS  Google Scholar 

  29. Wei S, Park BJ, Seo KH, Oh DH. Highly efficient and specific separation of Staphylococcus aureus from lettuce and milk using Dynabeads protein G conjugates. Food Sci Biotechnol. 2016;25(5):1501–5.

    Article  CAS  Google Scholar 

  30. Escadafal C, Faye O, Sall AA, Faye O, Weidmann M, Strohmeier O, et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis. 2014;8(3):e2730.

    Article  Google Scholar 

  31. Yang HL, Wei S, Gooneratne R, Mutukumira AN, Ma XJ, Tang SZ, et al. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control. Can J Microbiol. 2018;64(4):223–30.

    Article  CAS  Google Scholar 

  32. Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol. 2019;19(1):186.

    Article  CAS  Google Scholar 

  33. Varshney M, Yang L, Su XL, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J Food Prot. 2005;68:1804–11.

    Article  CAS  Google Scholar 

  34. Faja OM, Sharad AA, Younis KM, Alwan MG, Mohammed BJ, Ahmad A. Isolation, detection of virulence genes, antibiotic resistance genes, plasmid profile, and molecular typing among Vibrio parahaemolyticus isolated in Malaysian seawater from recreational beaches and fish. Vet World. 2019;12(7):1140–9.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Programs of China (no. 2017YFC1200201), the Shanghai Natural Science Foundation of China (nos. 17ZR1437200 and 18ZR1413400), and the National Natural Science Foundation of China (no. 31702277).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjie Liu or Quan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Ren, Y., Han, X. et al. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters. Anal Bioanal Chem 412, 2903–2914 (2020). https://doi.org/10.1007/s00216-020-02532-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02532-9

Keywords

Navigation