Skip to main content
Log in

Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We show that fused deposition modelling (FDM) 3D-printed electrodes can be used for quality control of fuel bioethanol. 3D-printing using carbon black/polylactic acid (CB-PLA) filaments resulted in conductive and biodegradable electrodes for biofuel analysis. As a proof-of-concept, copper determination in fuel bioethanol was performed, as such ions catalyse oxidation processes during storage and transport. Square-wave anodic-stripping voltammetry (SWASV) of copper was achieved after sample dilution in 0.1 mol L−1 HCl as supporting electrolyte (resulting in 30:70% v/v ethanol:water). The linear responses were in the range between 10 and 300 μg L−1 (R = 0.999), inter-day precision was lower than 8% (n = 10, for 20 μg L−1) and limits of detection (LOD) and quantification (LOQ) using 180 s as deposition time were 0.097 μg L−1 and 0.323 μg L−1, respectively. Recovery values between 95 and 103% for the analysis of bioethanol spiked with known amounts of copper were obtained. These results show great promise of the application of 3D-printed sensors for the quality control of biofuels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 2016;45:2740–55. https://doi.org/10.1039/c5cs00714c.

    Article  PubMed  CAS  Google Scholar 

  2. He Y, Wu Y, Fu JZ, Gao Q, Qiu JJ. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis. 2016;28:1658–78. https://doi.org/10.1002/elan.201600043.

    Article  CAS  Google Scholar 

  3. Lee CY, Taylor AC, Nattestad A, Beirne S, Wallace GG. 3D printing for electrocatalytic applications. Joule. 2019;3:1835–49. https://doi.org/10.1016/j.joule.2019.06.010.

    Article  CAS  Google Scholar 

  4. Rohaizad N, Mayorga-Martinez CC, Novotný F, Webster RD, Pumera M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem Commun. 2019;103:104–8. https://doi.org/10.1016/j.elecom.2019.05.010.

    Article  CAS  Google Scholar 

  5. Parker EK, Nielsen AV, Beauchamp MJ, Almughamsi HM, Nielsen JB, Sonker M, et al. 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Anal Bioanal Chem. 2019;411:5405–13. https://doi.org/10.1007/s00216-018-1440-9.

    Article  PubMed  CAS  Google Scholar 

  6. de Castro LF, de Freitas SV, Duarte LC, de Souza JAC, Paixão TRLC, Coltro WKT. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal Bioanal Chem. 2019;411:4919–28. https://doi.org/10.1007/s00216-019-01788-0.

    Article  PubMed  CAS  Google Scholar 

  7. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf. 2015;3:42–53. https://doi.org/10.1007/s40436-014-0097-7.

    Article  CAS  Google Scholar 

  8. Sun C, Liu S, Shi X, Lai C, Liang J, Chen Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem Eng J. 2020;381:122641. https://doi.org/10.1016/j.cej.2019.122641.

    Article  CAS  Google Scholar 

  9. Cardoso RM, Castro SVF, Silva MNT, Lima AP, Santana MHP, Nossol E, et al. 3D-printed flexible device combining sampling and detection of explosives. Sensors Actuators B Chem. 2019;292:308–13. https://doi.org/10.1016/j.snb.2019.04.126.

    Article  CAS  Google Scholar 

  10. Mattio E, Robert-peillard F, Branger C, Puzio K, Margaillan A. 3D-printed flow system for determination of lead in natural waters. Talanta. 2017;168:298–302. https://doi.org/10.1016/j.talanta.2017.03.059.

    Article  PubMed  CAS  Google Scholar 

  11. Bin Hamzah HH, Keattch O, Covill D, Patel BA. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes. Sci Rep. 2018;8:1–8. https://doi.org/10.1038/s41598-018-27188-5.

    Article  CAS  Google Scholar 

  12. Browne MP, Novotný F, Sofer Z, Pumera M. 3D printed graphene electrodes’ electrochemical activation. ACS Appl Mater Interfaces. 2018;10:40294–301. https://doi.org/10.1021/acsami.8b14701.

    Article  PubMed  CAS  Google Scholar 

  13. Cardoso RM, Silva PRL, Lima AP, Rocha DP, Oliveira TC, Prado TM, et al. 3D-printed graphene/polylactic acid electrode for bioanalysis: biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensors Actuators B Chem. 2020;307:127621. https://doi.org/10.1016/j.snb.2019.127621.

    Article  CAS  Google Scholar 

  14. Katseli V, Economou A, Kokkinos C. Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochem Commun. 2019;103:100–3. https://doi.org/10.1016/j.elecom.2019.05.008.

    Article  CAS  Google Scholar 

  15. Honeychurch KC, Rymansaib Z, Iravani P. Sensors and actuators B: chemical anodic stripping voltammetric determination of zinc at a 3-D printed carbon nanofiber – graphite – polystyrene electrode using a carbon pseudo-reference electrode. Sensors Actuators B Chem. 2018;267:476–82. https://doi.org/10.1016/j.snb.2018.04.054.

    Article  CAS  Google Scholar 

  16. Katic V, dos Santos PL, dos Santos MF, Pires BM, Loureiro HC, Lima AP, et al. 3D printed graphene electrodes modified with Prussian blue: emerging electrochemical sensing platform for peroxide detection. ACS Appl Mater Interfaces. 2019;11:35068–78. https://doi.org/10.1021/acsami.9b09305.

    Article  PubMed  CAS  Google Scholar 

  17. Hamzah HH, Shafiee SA, Abdalla A, Patel BA. 3D printable conductive materials for the fabrication of electrochemical sensors: a mini review. Electrochem Commun. 2018;96:27–31. https://doi.org/10.1016/j.elecom.2018.09.006.

    Article  CAS  Google Scholar 

  18. dos Santos PL, Katic V, Loureiro HC, dos Santos MF, dos Santos DP, Formiga ALB, et al. Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: role of exposed graphene sheets. Sensors Actuators B Chem. 2019;281:837–48. https://doi.org/10.1016/j.snb.2018.11.013.

    Article  CAS  Google Scholar 

  19. Almeida ES, Richter EM, Munoz RAA. On-site fuel electroanalysis: determination of lead, copper and mercury in fuel bioethanol by anodic stripping voltammetry using screen-printed gold electrodes. Anal Chim Acta. 2014;837:38–43. https://doi.org/10.1016/j.aca.2014.05.031.

    Article  PubMed  CAS  Google Scholar 

  20. Yuan W, Frey HC, Wei T, Rastogi N, VanderGriend S, Miller D, et al. Comparison of real-world vehicle fuel use and tailpipe emissions for gasoline-ethanol fuel blends. Fuel. 2019;249:352–64. https://doi.org/10.1016/j.fuel.2019.03.115.

    Article  CAS  Google Scholar 

  21. João AF, Squissato AL, Fernandes GM, Cardoso RM, Batista AD, Muñoz RAA. Iron (III) determination in bioethanol fuel using a smartphone-based device. Microchem J. 2019;146:1134–9. https://doi.org/10.1016/j.microc.2019.02.053.

    Article  CAS  Google Scholar 

  22. Squissato AL, Almeida ES, Silva SG, Richter EM, Batista AD, Munoz RAA. Screen-printed electrodes for quality control of liquid (bio)fuels. TrAC - Trends Anal Chem. 2018;108:210–20. https://doi.org/10.1016/j.trac.2018.08.024.

    Article  CAS  Google Scholar 

  23. Squissato AL, Neri TS, Coelho NMM, Richter EM, Munoz RAA. In situ electrochemical determination of free Cu(II) ions in biodiesel using screen-printed electrodes: direct correlation with oxidation stability. Fuel. 2018;234:1452–8. https://doi.org/10.1016/j.fuel.2018.08.027.

    Article  CAS  Google Scholar 

  24. Lima FF, Tormin TF, Richter EM, Munoz RAA. Stripping voltammetric determination of manganese in bioethanol. Microchem J. 2014;116:178–82. https://doi.org/10.1016/j.microc.2014.05.005.

    Article  CAS  Google Scholar 

  25. Almeida JS, Souza OCCO, Teixeira LSG. Determination of Pb, Cu and Fe in ethanol fuel samples by high-resolution continuum source electrothermal atomic absorption spectrometry by exploring a combination of sequential and simultaneous strategies. Microchem J. 2018;137:22–6. https://doi.org/10.1016/j.microc.2017.09.012.

    Article  CAS  Google Scholar 

  26. Silva LAJ, Stefano JS, Cardoso RM, Prado NS, Soares PHT, Nossol E, et al. Evaluation of graphite sheets for production of high-quality disposable sensors. J Electroanal Chem. 2019;833:560–7. https://doi.org/10.1016/j.jelechem.2018.12.029.

    Article  CAS  Google Scholar 

  27. Cardoso RM, Mendonça DMH, Silva WP, Silva MNT, Nossol E, da Silva RAB, et al. 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal Chim Acta. 2018;1033:49–57. https://doi.org/10.1016/j.aca.2018.06.021.

    Article  PubMed  CAS  Google Scholar 

  28. Richter EM, Rocha DP, Cardoso RM, Keefe EM, Foster CW, Munoz RAA, et al. Complete additively manufactured (3D-printed) electrochemical sensing platform. Anal Chem. 2019;91:12844–51. https://doi.org/10.1021/acs.analchem.9b02573.

    Article  PubMed  CAS  Google Scholar 

  29. Squissato AL, Richter EM, Munoz RAA. Voltammetric determination of copper and tert-butylhydroquinone in biodiesel: a rapid quality control protocol. Talanta. 2019;201:433–40. https://doi.org/10.1016/j.talanta.2019.04.030.

    Article  PubMed  CAS  Google Scholar 

  30. Wirth DM, Sheaff MJ, Waldman JV, Symcox MP, Whitehead HD, Sharp JD, et al. Electrolysis activation of fused-filament-fabrication 3D-printed electrodes for electrochemical and spectroelectrochemical analysis. Anal Chem. 2019;91:5553–7. https://doi.org/10.1021/acs.analchem.9b01331.

    Article  PubMed  CAS  Google Scholar 

  31. Manzanares-Palenzuela CL, Hermanova S, Sofer Z, Pumera M. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale. 2019;11:12124–31. https://doi.org/10.1039/c9nr02754h.

    Article  PubMed  CAS  Google Scholar 

  32. Teixeira LSG, Bezerra MDA, Lemos VA, Dos Santos HC, De Jesus DS, Costa ACS. Determination of copper, iron, nickel, and zinc in ethanol fuel by flame atomic absorption spectrometry using on-line preconcentration system. Sep Sci Technol. 2005;40:2555–65. https://doi.org/10.1080/01496390500267707.

    Article  CAS  Google Scholar 

  33. Tormin TF, Narciso LCD, Richter EM, Munoz RAA. Batch-injection stripping voltammetry of metals in fuel bioethanol. Fuel. 2014;117:952–6. https://doi.org/10.1016/j.fuel.2013.10.038.

    Article  CAS  Google Scholar 

  34. Zhai Z, Huang N, Zhuang H, Liu L, Yang B, Wang C, et al. A diamond/graphite nanoplatelets electrode for anodic stripping voltammetric trace determination of Zn(II), Cd(II), Pb(II) and Cu(II). Appl Surf Sci. 2018;457:1192–201. https://doi.org/10.1016/j.apsusc.2018.06.266.

    Article  CAS  Google Scholar 

  35. Takeuchi RM, Santos AL, Padilha PM, Stradiotto NR. Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica. Talanta. 2007;71:771–7. https://doi.org/10.1016/j.talanta.2006.05.035.

    Article  PubMed  CAS  Google Scholar 

  36. De Oliveira MF, Saczk AA, Okumura LL, Fernandes AP, De Moraes M, Stradiotto NR. Simultaneous determination of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry using a glassy carbon-mercury-film electrode. Anal Bioanal Chem. 2004;380:135–40. https://doi.org/10.1007/s00216-004-2733-8.

    Article  PubMed  CAS  Google Scholar 

  37. Munoz RAA, Angnes L. Simultaneous determination of copper and lead in ethanol fuel by anodic stripping voltammetry. Microchem J. 2004;77:157–62. https://doi.org/10.1016/j.microc.2004.02.010.

    Article  CAS  Google Scholar 

  38. Takeuchi RM, Santos AL, Medeiros MJ, Stradiotto NR. Copper determination in ethanol fuel samples by anodic stripping voltammetry at a gold microelectrode. Microchim Acta. 2009;164:101–6. https://doi.org/10.1007/s00604-008-0039-9.

    Article  CAS  Google Scholar 

  39. Cesarino I, Marino G, Cavalheiro ÉTG. A novel graphite-polyurethane composite electrode modified with thiol-organofunctionalized silica for the determination of copper ions in ethanol fuel. Fuel. 2010;89:1883–8. https://doi.org/10.1016/j.fuel.2009.11.037.

    Article  CAS  Google Scholar 

  40. Neto SY, Viégas HDC, Almeida JMS, Cavalheiro ETG, Araújo AS, Marques EP, et al. Electrode based on nickel-containing SBA-15 for the determination of copper in ethanol biofuel. Electroanalysis. 2016;28:1035–43. https://doi.org/10.1002/elan.201500619.

    Article  CAS  Google Scholar 

  41. Ariño C, Serrano N, Díaz-Cruz JM, Esteban M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta. 2017;990:11–53. https://doi.org/10.1016/j.aca.2017.07.069.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported by CNPq/TWAS (137634/2017-0), CNPq (427731/2018-6, 307172-2017-0 and 465389/2014-7 - INCTBio), FAPEMIG (PPM-00640-16) and CAPES (001 and 23038.007073/2014-12 Pró-Forense 25/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo A. A. Muñoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

João, A.F., Squissato, A.L., Richter, E.M. et al. Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode. Anal Bioanal Chem 412, 2755–2762 (2020). https://doi.org/10.1007/s00216-020-02513-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02513-y

Keywords

Navigation