Skip to main content
Log in

Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1−/− mouse model

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry imaging (MSI) is a powerful tool to perform untargeted mapping of biomolecules in situ. In the current study, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate lipid changes during disease progression (asymptomatic to symptomatic time points) in Niemann-Pick disease, type C1 (NPC1), a cerebellar neurodegenerative, lipid storage disorder. Our data show that gangliosides GM2 and GM3 are elevated in NPC1 disease and localize in the posterior lobules of the cerebellum, which is enhanced over a time-course analysis of the disease. Further analysis of sphingolipids in negative ion mode indicated reduction of sulfatides in white matter of the cerebellum and patterned distribution and co-localization of ceramide species Cer(d36:1), HexCer(d36:1), and the ganglioside GM1(d36:1) during disease progression. Finally, a putative lipid of unknown structure demonstrated similar patterning during NPC1 cerebellar degeneration. These studies provide insight into lipid markers of neurodegeneration in NPC1 and link lipid alterations to altered pathways that lead to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Higgins JJ, Patterson MC, Dambrosia JM, Pikus AT, Pentchev PG, Sato S, et al. A clinical staging classification for type C Niemann-Pick disease. Neurology. 1992;42(12):2286–90. https://doi.org/10.1212/wnl.42.12.2286.

    Article  CAS  PubMed  Google Scholar 

  2. Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea E, Neufeld EB, et al. Niemann-Pick disease type C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. New York: Mc Graw Hill; 2001.

    Google Scholar 

  3. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5(1):16. https://doi.org/10.1186/1750-1172-5-16.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science. 2000;290(5500):2298–301. https://doi.org/10.1126/science.290.5500.2298.

    Article  CAS  PubMed  Google Scholar 

  5. Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24. https://doi.org/10.1016/j.cell.2009.03.049.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vanier MT. Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen. Biochim Biophys Acta. 1983;750(1):178–84.

    Article  CAS  Google Scholar 

  7. Zhou S, Davidson C, McGlynn R, Stephney G, Dobrenis K, Vanier MT, et al. Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C. Am J Pathol. 2011;179(2):890–902. https://doi.org/10.1016/j.ajpath.2011.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanier MT. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res. 1999;24(4):481–9.

    Article  CAS  Google Scholar 

  9. Zervas M, Somers KL, Thrall MA, Walkley SU. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol. 2001;11(16):1283–7.

    Article  CAS  Google Scholar 

  10. Higashi Y, Murayama S, Pentchev PG, Suzuki K. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol. 1993;85(2):175–84. https://doi.org/10.1007/BF00227765.

    Article  CAS  PubMed  Google Scholar 

  11. Xie C, Burns DK, Turley SD, Dietschy JM. Cholesterol is sequestered in the brains of mice with Niemann-Pick type C disease but turnover is increased. J Neuropathol Exp Neurol. 2000;59(12):1106–17. https://doi.org/10.1093/jnen/59.12.1106.

    Article  CAS  PubMed  Google Scholar 

  12. Xie C, Turley SD, Dietschy JM. Cholesterol accumulation in tissues of the Niemann-Pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ. Proc Natl Acad Sci U S A. 1999;96(21):11992–7. https://doi.org/10.1073/pnas.96.21.11992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Love S, Bridges LR, Case CP. Neurofibrillary tangles in Niemann-Pick disease type C. Brain. 1995;118 ( Pt 1:119–29. https://doi.org/10.1093/brain/118.1.119.

    Article  PubMed  Google Scholar 

  14. Kodam A, Maulik M, Peake K, Amritraj A, Vetrivel KS, Thinakaran G, et al. Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Glia. 2010;58(11):1267–81. https://doi.org/10.1002/glia.21001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan X, Yang F, Lukas J, Witt M, Wree A, Rolfs A, et al. Hyperactive glial cells contribute to axonal pathologies in the spinal cord of Npc1 mutant mice. Glia. 2014;62(7):1024–40. https://doi.org/10.1002/glia.22659.

    Article  PubMed  Google Scholar 

  16. Pentchev PG, Gal AE, Booth AD, Omodeo-Sale F, Fouks J, Neumeyer BA, et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta. 1980;619(3):669–79.

    Article  CAS  Google Scholar 

  17. Weintraub H, Abramovici A, Sandbank U, Booth AD, Pentchev PG, Sela B. Dysmyelination in NCTR-Balb/C mouse mutant with a lysosomal storage disorder. Morphological survey. Acta Neuropathol. 1987;74(4):374–81.

    Article  CAS  Google Scholar 

  18. Beltroy EP, Richardson JA, Horton JD, Turley SD, Dietschy JM. Cholesterol accumulation and liver cell death in mice with Niemann-Pick type C disease. Hepatology. 2005;42(4):886–93. https://doi.org/10.1002/hep.20868.

    Article  CAS  PubMed  Google Scholar 

  19. Yu T, Shakkottai VG, Chung C, Lieberman AP. Temporal and cell-specific deletion establishes that neuronal Npc1 deficiency is sufficient to mediate neurodegeneration. Hum Mol Genet. 2011;20(22):4440–51. https://doi.org/10.1093/hmg/ddr372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elrick MJ, Pacheco CD, Yu T, Dadgar N, Shakkottai VG, Ware C, et al. Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum Mol Genet. 2010;19(5):837–47. https://doi.org/10.1093/hmg/ddp552.

    Article  CAS  PubMed  Google Scholar 

  21. Karten B, Vance DE, Campenot RB, Vance JE. Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann-Pick C1-deficient neurons. J Neurochem. 2002;83(5):1154–63. https://doi.org/10.1046/j.1471-4159.2002.01220.x.

    Article  CAS  PubMed  Google Scholar 

  22. Hawes CM, Wiemer H, Krueger SR, Karten B. Pre-synaptic defects of NPC1-deficient hippocampal neurons are not directly related to plasma membrane cholesterol. J Neurochem. 2010;114(1):311–22. https://doi.org/10.1111/j.1471-4159.2010.06768.x.

    Article  CAS  PubMed  Google Scholar 

  23. Peake KB, Vance JE. Normalization of cholesterol homeostasis by 2-hydroxypropyl-beta-cyclodextrin in neurons and glia from Niemann-Pick C1 (NPC1)-deficient mice. J Biol Chem. 2012;287(12):9290–8. https://doi.org/10.1074/jbc.M111.326405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizutani Y, Kihara A, Igarashi Y. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro) ceramide synthase with relatively broad substrate specificity. The Biochemical Journal. 2006;398(3):531–8. https://doi.org/10.1042/BJ20060379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao L, Spassieva SD, Jucius TJ, Shultz LD, Shick HE, Macklin WB, et al. A deficiency of ceramide biosynthesis causes cerebellar Purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 2011;7(5):e1002063. https://doi.org/10.1371/journal.pgen.1002063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem. 2008;283(9):5677–84. https://doi.org/10.1074/jbc.M707386200.

    Article  CAS  Google Scholar 

  27. Ginkel C, Hartmann D, vom Dorp K, Zlomuzica A, Farwanah H, Eckhardt M, et al. Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem. 2012;287(50):41888–902. https://doi.org/10.1074/jbc.M112.413500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levy M, Futerman AH. Mammalian ceramide synthases. IUBMB Life. 2010;62(5):347–56. https://doi.org/10.1002/iub.319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merrill AH, Jr. (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277 (29):25843–25846. doi:https://doi.org/10.1074/jbc.R200009200.

  30. Linke T, Wilkening G, Lansmann S, Moczall H, Bartelsen O, Weisgerber J, et al. Stimulation of acid sphingomyelinase activity by lysosomal lipids and sphingolipid activator proteins. Biol Chem. 2001;382(2):283–90. https://doi.org/10.1515/BC.2001.035.

    Article  CAS  PubMed  Google Scholar 

  31. Brady RO, Kanfer JN, Shapiro D. Metabolism of glucocerebrosides. Ii. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun. 1965;18(2):221–5. https://doi.org/10.1016/0006-291X(65)90743-6.

    Article  CAS  PubMed  Google Scholar 

  32. Heinrich M, Wickel M, Winoto-Morbach S, Schneider-Brachert W, Weber T, Brunner J, et al. Ceramide as an activator lipid of cathepsin D. In: Langner J, Ansorge S, editors. Cellular peptidases in immune functions and diseases, vol. 2. Boston, MA: Springer US; 2002. p. 305–15. https://doi.org/10.1007/0-306-46826-3_33.

    Chapter  Google Scholar 

  33. Zaidi N, Maurer A, Nieke S, Kalbacher H. Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun. 2008;376(1):5–9. https://doi.org/10.1016/j.bbrc.2008.08.099.

    Article  CAS  PubMed  Google Scholar 

  34. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to bid-mediated caspase-9 and -3 activation. Cell Death Differ. 2004;11(5):550–63. https://doi.org/10.1038/sj.cdd.4401382.

    Article  CAS  PubMed  Google Scholar 

  35. Benes P, Vetvicka V, Fusek M. Cathepsin D--many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68(1):12–28. https://doi.org/10.1016/j.critrevonc.2008.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE, et al. Increased activity and altered subcellular distribution of lysosomal enzymes determine neuronal vulnerability in Niemann-Pick type C1-deficient mice. Am J Pathol. 2009;175(6):2540–56. https://doi.org/10.2353/ajpath.2009.081096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cluzeau CV, Watkins-Chow DE, Fu R, Borate B, Yanjanin N, Dail MK, et al. Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1. Hum Mol Genet. 2012;21(16):3632–46. https://doi.org/10.1093/hmg/dds193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan M, Sidhu R, Fujiwara H, Tortelli B, Zhang J, Davidson C, et al. Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res. 2013;54(10):2800–14. https://doi.org/10.1194/jlr.M040618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tobias F, Olson MT, Cologna SM. Mass spectrometry imaging of lipids: untargeted consensus spectra reveal spatial distributions in Niemann-Pick disease type C1. J Lipid Res. 2018;59(12):2446–55. https://doi.org/10.1194/jlr.D086090.

    Article  CAS  PubMed  Google Scholar 

  40. Angel PM, Spraggins JM, Baldwin HS, Caprioli R. Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem. 2012;84(3):1557–64. https://doi.org/10.1021/ac202383m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom. 2013;24(5):718–21. https://doi.org/10.1007/s13361-013-0607-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2018;29(1):8–16. https://doi.org/10.1007/s13361-017-1809-6.

    Article  CAS  PubMed  Google Scholar 

  43. Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis. 2015;38(1):187–99. https://doi.org/10.1007/s10545-014-9794-4.

    Article  CAS  PubMed  Google Scholar 

  44. Fields RD. Neuroscience Change in the brain’s white matter. Science. 2010;330(6005):768–9. https://doi.org/10.1126/science.1199139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc Natl Acad Sci U S A. 2009;106(46):19316–21. https://doi.org/10.1073/pnas.0910916106.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang M, Strnatka D, Donohue C, Hallows JL, Vincent I, Erickson RP. Astrocyte-only Npc1 reduces neuronal cholesterol and triples life span of Npc1(−/−) mice. J Neurosci Res. 2008;86(13):2848–56. https://doi.org/10.1002/jnr.21730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takikita S, Fukuda T, Mohri I, Yagi T, Suzuki K. Perturbed myelination process of premyelinating oligodendrocyte in Niemann-Pick type C mouse. J Neuropathol Exp Neurol. 2004;63(6):660–73. https://doi.org/10.1093/jnen/63.6.660.

    Article  PubMed  Google Scholar 

  48. Kaya I, Brinet D, Michno W, Syvanen S, Sehlin D, Zetterberg H, et al. Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer’s disease mice (tgArcSwe) using MALDI imaging mass spectrometry. ACS Chem Neurosci. 2017;8(2):347–55. https://doi.org/10.1021/acschemneuro.6b00391.

    Article  CAS  PubMed  Google Scholar 

  49. Hsu FF. Complete structural characterization of ceramides as [M-H](−) ions by multiple-stage linear ion trap mass spectrometry. Biochimie. 2016;130:63–75. https://doi.org/10.1016/j.biochi.2016.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci U S A. 2005;102(35):12459–64. https://doi.org/10.1073/pnas.0500893102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Costello CE, Juhasz P, Perreault H. New mass spectral approaches to ganglioside structure determinations. Prog Brain Res. 1994;101:45–61.

    Article  CAS  Google Scholar 

  52. Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology. 1993;3(2):137–46. https://doi.org/10.1093/glycob/3.2.137.

    Article  CAS  PubMed  Google Scholar 

  53. Heffer-Lauc M, Lauc G, Nimrichter L, Fromholt SE, Schnaar RL. Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Biochim Biophys Acta. 2005;1686(3):200–8. https://doi.org/10.1016/j.bbalip.2004.10.002.

    Article  CAS  PubMed  Google Scholar 

  54. Vajn K, Viljetic B, Degmecic IV, Schnaar RL, Heffer M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS One. 2013;8(9):e75720. https://doi.org/10.1371/journal.pone.0075720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol. 2003;456(3):279–91. https://doi.org/10.1002/cne.10522.

    Article  PubMed  Google Scholar 

  56. Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res. 2014;55(8):1609–21. https://doi.org/10.1194/jlr.R047837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lopez ME, Klein AD, Scott MP. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J Neuroinflammation. 2012;9(1):216. https://doi.org/10.1186/1742-2094-9-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Osiecki-Newman K, Legler G, Grace M, Dinur T, Gatt S, Desnick RJ, et al. Human acid beta-glucosidase: inhibition studies using glucose analogues and pH variation to characterize the normal and Gaucher disease glycon binding sites. Enzyme. 1988;40(4):173–88.

    Article  CAS  Google Scholar 

  59. Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 2002;531(1):38–46.

    Article  CAS  Google Scholar 

  60. Linke T, Wilkening G, Sadeghlar F, Mozcall H, Bernardo K, Schuchman E, et al. Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J Biol Chem. 2001;276(8):5760–8. https://doi.org/10.1074/jbc.M006846200.

    Article  CAS  PubMed  Google Scholar 

  61. Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, Schuchman EH, et al. Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem. 1995;270(19):11098–102. https://doi.org/10.1074/jbc.270.19.11098.

    Article  CAS  PubMed  Google Scholar 

  62. Schulze H, Sandhoff K. Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 3(6):a004804. https://doi.org/10.1101/cshperspect.a004804.

  63. Tamura A, Nishida K, Yui N. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease. Sci Technol Adv Mater. 2016;17(1):361–74. https://doi.org/10.1080/14686996.2016.1200948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Quantitative, label-free proteomics in the symptomatic Niemann-Pick, type C1 mouse model using standard flow liquid chromatography and thermal focusing electrospray ionization. Proteomics. 2019;19(9):e1800432. https://doi.org/10.1002/pmic.201800432.

    Article  CAS  PubMed  Google Scholar 

  65. Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18(19):5252–63. https://doi.org/10.1093/emboj/18.19.5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li H, Repa JJ, Valasek MA, Beltroy EP, Turley SD, German DC, et al. Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann-Pick type C disease. J Neuropathol Exp Neurol. 2005;64(4):323–33. https://doi.org/10.1093/jnen/64.4.323.

    Article  CAS  PubMed  Google Scholar 

  67. German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM. Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience. 2002;109(3):437–50.

    Article  CAS  Google Scholar 

  68. Jin LW, Shie FS, Maezawa I, Vincent I, Bird T. Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol. 2004;164(3):975–85.

    Article  CAS  Google Scholar 

  69. Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, et al. Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 −/− mouse brain. Am J Pathol. 2007;171(3):962–75. https://doi.org/10.2353/ajpath.2007.070052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the University of Illinois at Chicago, Department of Chemistry and College of Liberal Arts and Sciences, and the Ara Parseghian Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie M. Cologna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Electronic supplementary material

ESM 1

(PDF 2122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobias, F., Pathmasiri, K.C. & Cologna, S.M. Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1−/− mouse model. Anal Bioanal Chem 411, 5659–5668 (2019). https://doi.org/10.1007/s00216-019-01989-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01989-7

Keywords

Navigation