Abstract
There is a high demand for easy, cheap, comparable, and robust methods for microplastic (MP) analysis, due to the ever-increasing public and scientific interest in (micro-) plastic pollution in the environment. Today, a multitude of methodologies for sampling, sample preparation, and analysis of MPs are in use. This feature article deals with the most prominent detection methods as well as with sampling strategies and sample preparation techniques. Special emphasis is on their benefits and challenges. Thus, spectroscopic methods, coupled with microscopy, require time-consuming sample preparation and extended measurement times, whereas thermo-analytical methods are faster but lack the ability to determine the size distribution in samples. To that effect, most of the described methods are applicable depending on the defined analytical question.

ᅟ






Similar content being viewed by others
References
Eubeler JP, Bernhard M, Knepper TP. Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends Anal Chem. 2010;29(1):84–100. https://doi.org/10.1016/j.trac.2009.09.005.
Pirc U, Vidmar M, Mozer A, Kržan A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ Sci Pollut Res Int. 2016;23(21):22206–11. https://doi.org/10.1007/s11356-016-7703-0.
Scherer C, Weber A, Lambert S, Wagner M. Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 153–80.
Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany. Environ. Sci. Technol. 2015;49(10):6070–6. https://doi.org/10.1021/acs.est.5b00492.
Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler E-M, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102(1):134–41. https://doi.org/10.1016/j.marpolbul.2015.11.043.
Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:17988. https://doi.org/10.1038/srep17988. https://www.nature.com/articles/srep17988#supplementary-information
Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. https://doi.org/10.1016/j.watres.2016.03.015.
plasticeurope.de. Studie zu Produktion, Verarbeitung und Verwertung von Kunststoffen in Deutschland 2015. 2017.
Taylor ML, Gwinnett C, Robinson LF, Woodall LC. Plastic microfibre ingestion by deep-sea organisms. Sci Rep. 2016;6:33997. https://doi.org/10.1038/srep33997.
Ferreira P, Fonte E, Soares ME, Carvalho F, Guilhermino L. Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat Toxicol. 2016;170:89–103. https://doi.org/10.1016/j.aquatox.2015.11.011.
Schmidt C, Krauth T, Wagner S. Export of plastic debris by rivers into the sea. Environ Sci Technol. 2017; https://doi.org/10.1021/acs.est.7b02368.
Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100(1):82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.
Wesch C, Elert AM, Wörner M, Braun U, Klein R, Paulus M. Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data. Sci Rep. 2017;7:5424. https://doi.org/10.1038/s41598-017-05838-4.
Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.
Cincinelli A, Scopetani C, Chelazzi D, Lombardini E, Martellini T, Katsoyiannis A, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere. 2017;175:391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024.
Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100(1):70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027.
Doyle MJ, Watson W, Bowlin NM, Sheavly SB. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar Environ Res. 2011;71(1):41–52. https://doi.org/10.1016/j.marenvres.2010.10.001.
Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10(7):524–37. https://doi.org/10.4319/lom.2012.10.524.
Klein S, Dimzon IK, Eubeler J, Knepper TP. Analysis, occurrence, and degradation of microplastics in the aqueous environment. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 51–67.
Wiesheu AC, Anger PM, Baumann T, Niessner R, Ivleva NP. Raman microspectroscopic analysis of fibers in beverages. Anal Methods. 2016;8(28):5722–5. https://doi.org/10.1039/C6AY01184E.
Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56(7):1720–39. https://doi.org/10.1002/anie.201606957.
Ivleva NP, Wiesheu AC, Niessner R. Mikroplastik in aquatischen Ökosystemen. Angew Chem. 2017;129(7):1744–64. https://doi.org/10.1002/ange.201606957.
Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12(5):563–81. https://doi.org/10.1071/EN14205.
Harrison JP, Ojeda JJ, Romero-González ME. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 2012;416:455–63. https://doi.org/10.1016/j.scitotenv.2011.11.078.
Suaria G, Avio CG, Mineo A, Lattin GL, Magaldi MG, Belmonte G, et al. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters. Sci Rep. 2016;6:37551. https://doi.org/10.1038/srep37551. https://www.nature.com/articles/srep37551#supplementary-information
Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11. https://doi.org/10.1016/j.scitotenv.2016.06.017.
Fries ED, Jens; Willmeyer Jana, Nuelle, Marie-Theres; Ebert, Martin; Remy, Dominique. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci: Processes Impacts 2013;15(1949).
Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174(Supplement C):572–84. https://doi.org/10.1016/j.chemosphere.2017.02.010.
Duemichen E, Braun U, Senz R, Fabian G, Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. J Chromatogr A. 2014;1354:117–28. https://doi.org/10.1016/j.chroma.2014.05.057.
Dimzon IKD, Knepper TP. Chapter 7- MALDI–TOF MS for characterization of synthetic polymers in aqueous environment. In: Fernandez-Alba AR, editor. Anal. Chem: Elsevier; 2012. p. 307–38.
Weidner SM, Trimpin S. Mass spectrometry of synthetic polymers. Anal Chem. 2010;82(12):4811–29. https://doi.org/10.1021/ac101080n.
Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. Sci Total Environ. 2016;566–567(Supplement C):27–33. https://doi.org/10.1016/j.scitotenv.2016.05.090.
Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 2016;113(1):469–76. https://doi.org/10.1016/j.marpolbul.2016.10.049.
Funding
The authors thank the BMBF for funding (FKZ: 02WRS1378D) the framing of the project Microplastics in the water cycle (MiWa).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Huppertsberg, S., Knepper, T.P. Instrumental analysis of microplastics—benefits and challenges. Anal Bioanal Chem 410, 6343–6352 (2018). https://doi.org/10.1007/s00216-018-1210-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-018-1210-8