Skip to main content
Log in

Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method was developed to rapidly concentrate, detect, and differentiate bacteria in skimmed milk using surface enhanced Raman scattering (SERS) mapping on 4-mercaptophenylboronic acid (4-MPBA) functionalized silver (Ag) dendrites. The 4-MPBA functionalized Ag dendritic SERS substrate was used to capture the bacterial cells and enhance the bacterial signal. Salmonella, a significantly important food pathogen, was used as the representative strain to optimize and evaluate the developed method. The capture efficiency for Salmonella enterica subsp enterica BAA1045 (SE1045) was 84.92 ± 3.25% at 106 CFU/mL and as high as 99.65 ± 3.58% at 103 CFU/mL. Four different strains, two gram-negative and two gram-positive, can be clearly distinguished by their SERS spectra using principle component analysis. A mapping technique was utilized to automatically collect 400 spectra over an area of 60 μm × 60 μm to construct a visual image for a sensitive and statistically reliable detection within 30 min. Using this method, we were able to detect as low as 103 CFU/mL bacterial cells in 50 mM NH4HCO3 solution and 102 CFU/mL cells in both 1% casein and skimmed milk. Our results demonstrate the feasibility of using SERS mapping method coupled with 4-MPBA functionalized Ag dendrites for rapid and sensitive bacteria detection in complex liquid samples.

A novel SERS mapping method based on 4-mercaptophenylboronic acid functionalized silver (Ag) dendrites was developed to rapidly concentrate, detect, and differentiate bacteria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta. 2015;893:1–13.

    Article  CAS  Google Scholar 

  2. Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr Rev Food Sci Food Saf. 2014;13(3):317–28.

    Article  CAS  Google Scholar 

  3. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1(1):601–26.

    Article  CAS  Google Scholar 

  4. Campion A, Kambhampati P, Campion A, Harris C. Surface-enhanced Raman scattering. 1998;27:241–50.

  5. Kneipp K, Moskovits M, Kneipp H. Surface-enhanced Raman scattering—physics and applications. Topics in Applied Physics. 2006. 19–61 p.

  6. Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, et al. Rapid label-free in-situ discrimination of live and dead bacteria by SERS. Anal Chem. 2015;87:6553–61.

    Article  CAS  Google Scholar 

  7. Sengupta A, Mujacic M, Davis EJ. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2006;386(5):1379–86.

    Article  CAS  Google Scholar 

  8. Jarvis RM, Goodacre R. Characterisation and identification of bacteria using SERS. Chem Soc Rev. 2008;37(5):931–6.

    Article  CAS  Google Scholar 

  9. Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss. 2006;132:281–92.

    Article  CAS  Google Scholar 

  10. Chen L, Mungroo N, Daikuara L, Neethirajan S. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnol BioMed Central. 2015;13:45–53.

    Article  Google Scholar 

  11. Guicheteau J, Christesen S, Emge D, Tripathi A. Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J Raman Spectrosc. 2010;41(November 2009):1632–7.

    Article  Google Scholar 

  12. Montoya JR, Armstrong RL, Smith GB. Detection of Salmonella using surfaced enhanced Raman scattering. Proc SPIE. 2003;5085:144–52.

    Article  CAS  Google Scholar 

  13. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem. 2014;86(3):1525–33.

    Article  CAS  Google Scholar 

  14. Wang P, Pang S, Chen J, McLandsborough L, Nugen SR, Fan M, et al. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst. 2016;141(4):1356–62.

    Article  CAS  Google Scholar 

  15. Cho I-H, Bhandari P, Patel P, Irudayaraj J. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens Bioelectron Elsevier. 2014;64C:171–6.

    Google Scholar 

  16. Chen L, Razavi FS, Mumin A, Guo X, Sham T-K, Zhang J. Multifunctional nanoparticles for rapid bacterial capture, detection, and decontamination. RSC Adv. 2013;3(7):2390–7.

    Article  CAS  Google Scholar 

  17. Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1–7.

    Article  Google Scholar 

  18. He L, Deen DB, Pagel AH, Diez-Gonzalez F, Labuza TP. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst. 2013;138(6):1657–9.

    Article  CAS  Google Scholar 

  19. Liu T-Y, Tsai K-T, Wang H-H, Chen Y, Chen Y-H, Chao Y-C, et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat Commun Nature Publ Group. 2011;2:538–46.

    Article  Google Scholar 

  20. Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H, et al. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew Chemie Int Ed. 2015;54(17):5132–6.

    Article  CAS  Google Scholar 

  21. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E. Biosensors for detection of pathogenic bacteria. Biosens Bioelectron. 1999;14(7):599–624.

    Article  CAS  Google Scholar 

  22. Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng. 2007;24(2):191–200.

    Article  CAS  Google Scholar 

  23. Wu X, Xu C, Tripp RA, Huang Y, Zhao Y. Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst. 2013;138(10):3005–12.

    Article  CAS  Google Scholar 

  24. He L, Lin M, Li H, Kim NJ. Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J Raman Spectrosc. 2010;41(7):739–44.

    CAS  Google Scholar 

  25. He LL, Rodda T, Haynes CL, Deschaines T, Strother T, Diez-Gonzalez F, et al. Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal Chem. 2011;83(5):1510–3.

    Article  CAS  Google Scholar 

  26. Jackson P, Attalla MI. N-Nitrosopiperazines form at high pH in post-combustion capture solutions containing piperazine: a low-energy collisional behaviour study. Rapid Commun Mass Spectrom. 2010;24(24):3567–77.

    Article  CAS  Google Scholar 

  27. Qi D, Zhang H, Tang J, Deng C, Zhang X. Facile Synthesis of Mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. 2010;114(20):9221–6

  28. Khan SA, Singh AK, Senapati D, Fan Z, Ray PC. Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles. Chem Commun (Camb). 2011;47:9444–6.

    Article  CAS  Google Scholar 

  29. Walter A, März A, Schumacher W, Rösch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011;11(207890):1013–21.

    Article  CAS  Google Scholar 

  30. Jarvis RM, Law N, Shadi IT, O’Brien P, Lloyd JR, Goodacre R. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem. 2008;80(17):6741–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is funded by USDA-NIFA 2015-67021-22993 and USDA-NIFA hatch (MAS00491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Pang, S., Pearson, B. et al. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Anal Bioanal Chem 409, 2229–2238 (2017). https://doi.org/10.1007/s00216-016-0167-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0167-8

Keywords

Navigation