Skip to main content
Log in

A new selective fluorene-based fluorescent internal charge transfer (ICT) sensor for sugar alcohols in aqueous solution

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sugar alcohols, such as sorbitol, are commonly used as a replacement for sucrose in the food industry, applied as starting material for vitamin C synthesis, and involved as one of the causative factors in diabetic complications. Therefore, their detection and quantification in aqueous solution are necessary. The reversible covalent interactions between boronic acids and diols are the basis of efficient methods for the detection of saccharides. Herein, we report a new internal charge transfer (ICT) fluorene-based fluorescent boronic acid sensor (1) 2-[(9,9-dimethyl-9H-fluoren-2-yl-amino)methyl] phenyl boronic acid that shows significant fluorescence changes upon addition of saccharides. The boronic acid has high affinity (K a = 1107.9 M−1) and selectivity for sorbitol at pH = 8.31. It showed a linear response toward sorbitol in the concentration range from 1.0 × 10−5 to 6.0 × 10−4 mol L−1 with the detection limit of 7.04 × 10−6 mol L−1. Sensor 1 was used to detect sorbitol in real samples with good recovery.

A new ICT fluorene-based fluorescent boronic acid sensor (1) that shows high affinity and selectivity for d-sorbitol (K a = 1107.9 M−1) is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Feng L, Liu Y, Tan Y, Hu J. Biosensor for the determination of sorbitol based on molecularly imprinted electro synthesized polymers. Biosens Bioelectron. 2004;19:1513–9.

    Article  CAS  Google Scholar 

  2. Miwa I, Kanbara M, Wakazono H. Analysis of sorbitol, galactitol, and myo-inositol in lens and sciatic nerve by high-performance liquid chromatography. Anal Biochem. 1988;173:39–44.

    Article  CAS  Google Scholar 

  3. Sim HJ, Jeong JS, Kwon HJ, Kang TH, Park HM, Lee YM, et al. HPLC with pulsed amperometric detection for sorbitol as a biomarker for diabetic neuropathy. J Chromatogr B. 2009;877:1607–11.

    Article  CAS  Google Scholar 

  4. Liao JC, Rountree M, Good R, Hook J, Punko C. Determination of D-sorbitol in human erythrocytes by an improved enzymatic method with fluorometric detection. Clin Chem. 1988;34:2327–30.

    CAS  Google Scholar 

  5. Nojiri S, Taguchi N, Oishi M, Suzuki S. Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation. J Chromatogr A. 2000;893:195–200.

    Article  CAS  Google Scholar 

  6. James TD, Philips MD, Shinkai S. Boronic acids in saccharide recognition. Cambridge: RSC Publishing; 2006.

    Google Scholar 

  7. Swamy KMK, Jang YJ, Park MS, Koh HS, Lee SK, Yoon Y, et al. A sorbitol-selective fluorescence sensor. Tetrahedron Lett. 2005;46:3453–6.

    Article  CAS  Google Scholar 

  8. Zhang Y, Gao X, Hardcastl K, Wang B. Water‐soluble fluorescent boronic acid compounds for saccharide sensing: substituent effects on their fluorescence properties. Chem Eur J. 2006;12:1377–84.

    Article  CAS  Google Scholar 

  9. Gao X, Zhang Y, Wang B. New boronic acid fluorescent reporter compounds. A naphthalene-based on-off sensor functional at physiological pH. Org Lett. 2003;5:4615–8.

    Article  CAS  Google Scholar 

  10. Wang J, Jin S, Akay S, Wang B. Design and synthesis of long‐wavelength fluorescent boronic acid reporter compounds. Eur J Org Chem. 2007;2007:2091–9.

    Article  Google Scholar 

  11. Liu S, Bai H, Sun Q, Zhang W, Qian J. Naphthalimide-based fluorescent photoinduced electron transfer sensors for saccharides. RSC Adv. 2015;5:2837–43.

    Article  CAS  Google Scholar 

  12. Wang J, Jin S, Lin N, Wang B. Fluorescent indolylboronic acids that are useful reporters for the synthesis of boronolectins. Chem Biol Drug Des. 2006;67:137–44.

    Article  CAS  Google Scholar 

  13. Akay S, Yang W, Wang J, Lin L, Wang B. Synthesis and evaluation of dual wavelength fluorescent benzo[b] thiophene boronic acid derivatives for sugar sensing. Chem Biol Drug Des. 2007;70:279–89.

    Article  CAS  Google Scholar 

  14. Liang X, James TD, Zhao J. 6, 6′-Bis-substituted BINOL boronic acids as enantioselective and chemoselective fluorescent chemosensors for D-sorbitol. Tetrahedron. 2008;64:1309–15.

    Article  CAS  Google Scholar 

  15. Zhao J, James TD. Chemoselective and enantioselective fluorescent recognition of sugar alcohols by a bisboronic acid receptor. J Mater Chem. 2005;15:2896–901.

    Article  CAS  Google Scholar 

  16. James TD. Boronic acids: preparation and applications. In: Hall DG, editor. Organic synthesis and medicine. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  17. Hosseinzadeh R, Mohadjerani M, Pooryousef M. Fluorene‐based boronic acids as fluorescent chemosensor for monosaccharides at physiological pH. Luminescence. 2015;30:544–55.

    Article  Google Scholar 

  18. Hosseinzadeh R, Mohadjerani M, Pooryousef M, Eslami A, Emami S. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH. Spectrochim Acta A. 2015;144:53–60.

    Article  CAS  Google Scholar 

  19. Kuhn WE. 2‐Nitrofluorene. Org Synth. 1943;2:448.

    Google Scholar 

  20. Saroja G, Pingzhu Z, Ernsting NP, Liebscher J. Synthesis of alkylated aminofluorenes by palladium-catalyzed substitution at halofluorenes. J Org Chem. 2004;69:987–90.

    Article  CAS  Google Scholar 

  21. Bavin PMG. Org Synth. 1960;40:5.

    Article  CAS  Google Scholar 

  22. Snyder HR, Reedy AJ, Lennar WJ. Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine 1. J Am Chem Soc. 1958;80:835–8.

    Article  CAS  Google Scholar 

  23. Perrin DD, Dempsey B. Buffers for pH and metal ion control. London: Chapman and Hall; 1974.

    Google Scholar 

  24. Gao X, Zhang Y, Wang B. A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes. Tetrahedron. 2005;61:9111–7.

    Article  CAS  Google Scholar 

  25. Badugu R, Lakowicz JR, Geddes CD. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring. Bioorg Med Chem. 2005;13:113–9.

    Article  CAS  Google Scholar 

  26. Dicesare N, Adhikari DP, Heynekamp J, Heagy MD, Lakowicz JR. Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-phenylboronic acid derivatives of 1,8-naphthalimide. J Fluoresc. 2002;12:147–54.

    Article  CAS  Google Scholar 

  27. Arimori S, Bosch LI, Ward CJ, James TD. D-glucose selective fluorescent internal charge transfer (ICT) sensor. Tetrahedron Lett. 2002;43:911–3.

    Article  CAS  Google Scholar 

  28. Bosch LI, Mahon MF, James TD. The B–N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors. Tetrahedron Lett. 2004;45:2859–62.

    Article  CAS  Google Scholar 

  29. Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum; 1999.

    Book  Google Scholar 

  30. Arimori S, Bosch LI, Ward CJ, James TD. Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Lett. 2001;42:4553–5.

    Article  CAS  Google Scholar 

  31. Wang J, Jin S, Akay S, Wang B. Design and synthesis of long‐wavelength fluorescent boronic acid reporter compounds. Eur J Org Chem. 2007;2007:2091–9.

Download references

Acknowledgments

Financial support from the research council of the University of Mazandaran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, R., Mohadjerani, M. & Pooryousef, M. A new selective fluorene-based fluorescent internal charge transfer (ICT) sensor for sugar alcohols in aqueous solution. Anal Bioanal Chem 408, 1901–1908 (2016). https://doi.org/10.1007/s00216-015-9297-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9297-7

Keywords

Navigation