Skip to main content

Advertisement

Log in

High-throughput wide dynamic range procedure for the simultaneous quantification of nicotine and cotinine in multiple biological matrices using hydrophilic interaction liquid chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A straightforward, high-throughput method was developed and fully validated for the simultaneous determination of the specific tobacco biomarkers nicotine and its main metabolite cotinine in a wide dynamic range and supporting the most common human biological matrices (urine, oral fluid and hair). Sample preparation was performed inside the very HPLC injection vials by pipetting 0.5 mL of the liquid samples, deuterated internal standards in alkaline solution and dichloromethane as extraction solvent. Solid samples (i.e. around 10 mg hair) were first submitted to alkaline digestion in the HPLC vials and processed accordingly. The organic phase (reached through the upper aqueous layer) was directly injected without further treatment. Instrumental analysis was performed using hydrophilic interaction (HILIC) ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Total chromatographic time was 2 min. The method covers a wide dynamic range making it fit-for-purpose for the analysis of samples covering entire populations, irrespective of the level of exposure or tobacco use. Calibration curves (r 2 > 0.995) covered the range 1–2000 ng/mL (or 0.05–100 ng/mg hair) for nicotine and 0.1–2000 ng/mL (or 0.005–100 ng/mg hair) for cotinine. Within-run and between-run precision and accuracy were typically below 10 %, and always below 20 % at the lower limit of quantification. The method was successfully applied to the analysis of samples from different projects involving multiple matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin-Rector A, Levitz CE, Lopez AD, Murray CJ (2012) Age-specific and sex-specific mortality in 187 countries, 1970–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2071–2094

    Article  Google Scholar 

  2. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health (2006) The health consequences of involuntary exposure to tobacco smoke: a report of the Surgeon General. USDHHS, Atlanta, GA

    Google Scholar 

  3. Word Health Organization (WHO) (2003) WHO Framework Convention on Tobacco Control (WHO FCTC). WHO, Geneva, Switzerland

    Google Scholar 

  4. Gruer L, Tursan d'Espaignet E, Haw S, Fernández E, Mackay J (2012) Smoke-free legislation: global reach, impact and remaining challenges. Public Health 126:227–229

    Article  CAS  Google Scholar 

  5. Jacob P 3rd, Yu L, Duan M, Ramos L, Yturralde O, Benowitz NL (2011) Determination of the nicotine metabolites cotinine and trans-3'-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography-tandem mass spectrometry: biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2A6 activity. J Chromatogr B Analyt Technol Biomed Life Sci 879:267–276

    Article  CAS  Google Scholar 

  6. Benowitz NL (1999) Biomarkers of environmental tobacco smoke exposure. Environ Health Perspect 107(Suppl 2):349–355

    Article  Google Scholar 

  7. Ino T, Ohtani T, Yoshimi I (2011) Urinary biomarkers for secondhand smoke. J Clin Lab Anal 25:354–358

    Article  CAS  Google Scholar 

  8. Florescu A, Ferrence R, Einarson T, Selby P, Soldin O, Koren G (2009) Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicology. Ther Drug Monit 31:14–30

    Article  CAS  Google Scholar 

  9. Avila-Tang E, Al-Delaimy WK, Ashley DL, Benowitz N, Bernert JT, Kim S, Samet JM, Hecht SS (2012) Assessing secondhand smoke using biological markers. Tob Control 22:164–171

    Article  Google Scholar 

  10. Benowitz NL (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev 18:188–204

    Article  CAS  Google Scholar 

  11. Uematsu T, Mizuno A, Nagashima S, Oshima A, Nakamura M (1995) The axial distribution of nicotine content along hair shaft as an indicator of changes in smoking behaviour: evaluation in a smoking-cessation programme with or without the aid of nicotine chewing gum. Br J Clin Pharmacol 39:665–669

    Article  CAS  Google Scholar 

  12. Kintz P, Tracqui A, Mangin P (1992) Detection of drugs in human hair for clinical and forensic applications. Int J Legal Med 105:1–4

    Article  CAS  Google Scholar 

  13. Al-Delaimy WK (2002) Hair as a biomarker for exposure to tobacco smoke. Tob Control 11:176–182

    Article  CAS  Google Scholar 

  14. Ortega G, Castellà C, Martín-Cantera C, Ballvé JL, Díaz E, Saez M, Lozano J, Rofes L, Morera C, Barceló A, Cabezas C, Pascual JA, Pérez-Ortuño R, Saltó E, Valverde A, Jané M, BIBE Study Group (2010) Passive smoking in babies: the BIBE study (Brief Intervention in babies. Effectiveness). BMC Public Health 10:772

    Article  Google Scholar 

  15. Kataoka H, Inoue R, Yagi K, Saito K (2009) Determination of nicotine, cotinine, and related alkaloids in human urine and oral fluid by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 49:108–114

    Article  CAS  Google Scholar 

  16. Pascual JA, Diaz D, Segura J, Garcia-Algar O, Vall O, Zuccaro P, Pacifici R, Pichini S (2003) A simple and reliable method for the determination of nicotine and cotinine in teeth by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 17:2853–2855

    Article  Google Scholar 

  17. da Fonseca BM, Moreno IE, Magalhães AR, Barroso M, Queiroz JA, Ravara S, Calheiros J, Gallardo E (2012) Determination of biomarkers of tobacco smoke exposure in oral fluid using solid-phase extraction and gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 889–890:116–122

    Article  Google Scholar 

  18. Meger M, Meger-Kossien I, Schuler-Metz A, Janket D (2002) Simultaneous determination of nicotine and eight nicotine metabolites in urine of smokers using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 778:251–261

    Article  CAS  Google Scholar 

  19. Mahoney GN, Al-Delaimy W (2001) Measurement of nicotine in hair by reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 753:179–187

    Article  CAS  Google Scholar 

  20. Ghosheh OA, Browne D, Rogers T, de Leon J, Dwoskin LP, Crooks PA (2000) A simple high performance liquid chromatographic method for the quantification of total cotinine, total 3'-hydroxycotinine and caffeine in the plasma of smokers. J Pharm Biomed Anal 23:543–549

    Article  CAS  Google Scholar 

  21. Kim I, Huestis MA (2006) A validated method for the determination of nicotine, cotinine, trans-3'-hydroxycotinine, and norcotinine in human plasma using solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. J Mass Spectrom 41:815–821

    Article  CAS  Google Scholar 

  22. Kardani F, Daneshfar A, Sahrai R (2010) Determination of nicotine, anabasine, and cotinine in urine and oral fluid samples using single-drop microextraction. J Chromatogr B Analyt Technol Biomed Life Sci 878:2857–2862

    Article  CAS  Google Scholar 

  23. Wang H, Ren Y, McLuckey MN, Manicke NE, Park J, Zheng L, Shi R, Cooks RG, Ouyang Z (2013) Direct quantitative analysis of nicotine alkaloids from biofluid samples using paper spray mass spectrometry. Anal Chem 85:11540–11544

    Article  CAS  Google Scholar 

  24. Bernert JT Jr, Turner WE, Pirkle JL, Sosnoff CS, Akins JR, Waldrep MK, Ann Q, Covey TR, Whitfield WE, Gunter EW, Miller BB, Patterson DG Jr, Needham LL, Hannon WH, Sampson EJ (1997) Development and validation of sensitive method for determination of serum cotinine in smokers and nonsmokers by liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. Clin Chem 43:2281–2291

    CAS  Google Scholar 

  25. Sureda X, Martínez-Sánchez JM, Fu M, Pérez-Ortuño R, Martínez C, Carabasa E, López MJ, Saltó E, Pascual JA, Fernández (2014) Impact of the Spanish smoke-free legislation on adult, non-smoker exposure to secondhand smoke: cross-sectional surveys before (2004) and after (2012) legislation. E. PLoS ONE 9:e89430

    Article  Google Scholar 

  26. Bentley MC, Abrar M, Kelk M, Cook J, Phillips K (1999) Validation of an assay for the determination of cotinine and 3-hydroxycotinine in human oral fluid using automated solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. J Chromatogr B Biomed Sci Appl 723:185–194

    Article  CAS  Google Scholar 

  27. L. Wang, A. Uribe, D. Chatfield, P. J. Quintana, G. Matt, X. Liu and B. Schnute (2007) A Validated Analytical Method for Environmental Nicotine Exposure by Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. Dionex. http://www.dionex.com/en-us/webdocs/62284-LPN%201994-01_Nicotine_ACS.pdf. Accessed 23 Feb 2015

  28. Shakleya DM, Huestis MA (2009) Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, cotinine, trans-3'-hydroxycotinine and norcotinine in human oral fluid. Anal Bioanal Chem 395:2349–2357

    Article  CAS  Google Scholar 

  29. Wu CF, Uang SN, Chiang SY, Shih WC, Huang YF, Wu KY (2012) Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 402:2113–2120

    Article  CAS  Google Scholar 

  30. Man CN, Ismail S, Harn GL, Lajis R, Awang R (2008) Determination of hair nicotine by gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:339–342

    Article  Google Scholar 

  31. Martínez-Sánchez JM, Fernández E, Fu M, Pascual JA, Ariza C, Agudo A, Borràs JM, Schiaffino A, Moncada A, Jané M, Saltó E, Nebot M, Samet JM, DCOT study investigators (2009) Assessment of exposure to secondhand smoke by questionnaire and salivary cotinine in the general population of Barcelona, Spain (2004–2005). Prev Med 48:218–223

    Article  Google Scholar 

  32. Fu M, Fernández E, Pascual JA, Martínez-Sánchez JM, Agudo A, Moncada A, Nebot M, Borràs JM, DCOT Study Investigators (2011) Stages of change, smoking characteristics, and cotinine concentrations in smokers: setting priorities for smoking cessation. Prev Med 52:139–145

    Article  Google Scholar 

  33. Ballbè M, Martínez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R, Pascual JA, Saltó E, Fernández E (2014) Cigarettes vs. e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ Res 135:76–80

    Article  Google Scholar 

  34. Ortega G, Cabezas C, Almeda J, Saez M, Ballvé JL, Pascual JA, Castellà C, Martín-Cantera C, Saltó E, Casademont RM, Díaz E, Lozano J, Moreda C, Valverde A, Pérez-Ortuño R, Rofes L, Jané M, BIBE study group (2015) Effectiveness of a brief primary care intervention to reduce passive smoking in babies: a cluster randomised clinical trial. J Epidemiol Community Health 69:249–260

    Article  Google Scholar 

  35. European Medicines Agency (EMEA), Science Medicines Health, Committee for Medicinal Products for Human Use (CHMP) (2012) Guideline on bioanalytical method validation. EMEA, London, UK

    Google Scholar 

  36. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  37. Murphy SE, Villalta P, Ho SW, von Weymarn LB (2007) Analysis of [3′,3′-d(2)]-nicotine and [3′,3′-d(2)]-cotinine by capillary liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 857:1–8

    Article  CAS  Google Scholar 

  38. Smyth TJ, Ramachandran VN, McGuigan A, Hopps J, Smyth W (2007) Characterisation of nicotine and related compounds using electrospray ionisation with ion trap mass spectrometry and with quadrupole time-of-flight mass spectrometry and their detection by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 21:557–566

    Article  CAS  Google Scholar 

  39. Pellegrini M, Marchei E, Rossi S, Vagnarelli F, Durgbanshi A, García-Algar O, Vall O, Pichini S (2007) Liquid chromatography/electrospray ionization tandem mass spectrometry assay for determination of nicotine and metabolites, caffeine and arecoline in breast milk. Rapid Commun Mass Spectrom 21:2693–2703

    Article  CAS  Google Scholar 

  40. Tuomi T, Johnsson T, Teijula K (1999) Analysis of nicotine, 3-hydroxycotinine, cotinine, and caffeine in urine of passive smokers by HPLC-tandem mass spectrometry. Clin Chem 45:2164–2172

    CAS  Google Scholar 

  41. White E, Armstrong BK, Saracci R (2008) Principles of exposure measurement in epidemiology: collecting, evaluating and improving measures of disease risk factors. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  42. Miller EI, Murray GJ, Rollins DE, Tiffany ST, Wilkins DG (2011) Validation of a liquid chromatography-tandem mass spectrometry method for the detection of nicotine biomarkers in hair and an evaluation of wash procedures for removal of environmental nicotine. J Anal Toxicol 35:321–332

    Article  CAS  Google Scholar 

  43. Marclay F, Saugy M (2010) Determination of nicotine and nicotine metabolites in urine by hydrophilic interaction chromatography-tandem mass spectrometry: potential use of smokeless tobacco products by ice hockey players. J Chromatogr A 1217:7528–7538

    Article  CAS  Google Scholar 

  44. Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR, Hurt RD (2002) Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin Chem 48:1460–1471

    CAS  Google Scholar 

  45. Piller M, Gilch G, Scherer G, Scherer M (2014) Simple, fast and sensitive LC-MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J Chromatogr B 951–952:7–15

    Article  Google Scholar 

  46. U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2013) Guidance for industry—bioanalytical method validation. FDA, Rockville, MD

    Google Scholar 

  47. Substance Abuse and Mental Health Services Administration (SAMHSA), Department of Health and Human Services (2010) Mandatory Guidelines for Federal Workplace Drug Testing Programs. Federal Register 75:FR22809

    Google Scholar 

  48. Society of Forensic Toxicologists (SOFT), Inc., American Academy of Forensic Sciences (AAFS), Toxicology Section (2006) Forensic Toxicology Laboratory Guidelines. SOFT/AAFS, Azusa, CA, USA. Scientific Working Group for Forensic Toxicology. J Anal Toxicol 37(7):452–474, 2013

    Google Scholar 

  49. Eurachem (2014) The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics. Eurachem, Leoben, Austria

    Google Scholar 

Download references

Acknowledgments

The study was funded by Instituto de Salud Carlos III-FEDER, Government of Spain (grant PI081339 and PI081436) [25, 3133] and the Spain’s National Committee on Smoking Prevention (grant CNPT0701) [34].

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Pascual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Ortuño, R., Martínez-Sánchez, J.M., Fernández, E. et al. High-throughput wide dynamic range procedure for the simultaneous quantification of nicotine and cotinine in multiple biological matrices using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407, 8463–8473 (2015). https://doi.org/10.1007/s00216-015-8993-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8993-7

Keywords

Navigation