Skip to main content
Log in

Fast determination of underivatized gentamicin C components and impurities by LC-MS using a porous graphitic carbon stationary phase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gentamicin C antibiotics are important because they are active against many multidrug-resistant Gram-negative bacilli. Unfortunately, their clinical usefulness is limited by their toxicity. Because of the difficulty involved in separating its different components, the US and European pharmacopeias both specify that the composition of gentamicin C should be determined by liquid chromatography with pulsed electrochemical detection. Here, we assess the usefulness of a porous graphitic carbon (PGC) HPLC column for separating the components of gentamicin C, and report chromatographic conditions that enable its direct characterization by PGC chromatography directly coupled to electrospray mass spectrometry. Native major components of gentamicin and impurities in commercial formulations were retained and separated on the PGC column without any need for derivatization, using mobile phases basified with ammonium hydroxide. When coupled with detection by conventional electrospray ion trap mass spectrometry (ESI-IT-MS), several previously reported impurities were detected easily, including the most polar gentamicin impurity, garamine. When operating in full-scan mode, it was possible to identify and quantitate gentamicin-related compounds using injected samples of only a few picograms. Under the described conditions, all analytes were eluted in less than 10 min and the LC-MS analyses exhibited excellent stability and linearity. The method’s effectiveness was evaluated by analyzing commercial gentamicin batches and in-house formulations. When the PGC chromatographic system was coupled to an evaporative light-scattering detector, detection limits of 40–70 ng were achieved for various major gentamicin components. The chromatographic method was applied on a semi-preparative scale to purify the five major components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–c
Fig. 6

Similar content being viewed by others

References

  1. Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727–737

    CAS  Google Scholar 

  2. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450

    Article  CAS  Google Scholar 

  3. Hobbie SN, Pfister P, Brüll C, Westhof E, Böttger EC (2005) Analysis of the contribution of individual substituents in 4,6-aminoglycoside–ribosome interaction. Antimicrob Agents Chemother 49:5112–5118

  4. Bérdy J, Pauncz JK, Vajna ZM, Horváth G, Gyimesi J, Koczka I (1977) Metabolites of gentamicin-producing Micromonospora species I. Isolation and identification of metabolites. J Antibiot 30:945–954

  5. McGlinchey TA, Rafter PA, Regan F, McMahon GP (2008) A review of analytical methods for the determination of aminoglycoside and macrolide residues in food matrices. Anal Chim Acta 624:1–15

    Article  CAS  Google Scholar 

  6. Stead DA (2000) Current methodologies for the analysis of aminoglycosides. J Chromatogr B 747:69–93

    Article  CAS  Google Scholar 

  7. Isoherranen N, Soback S (1999) Chromatographic methods for analysis of aminoglycoside antibiotics. J AOAC Int 82:1017–1045

    CAS  Google Scholar 

  8. Blasco C, Picó Y, Torres CM (2007) Progress in analysis of residual antibacterials in food. TrAC Trends Anal Chem 26:895–913

  9. Wienen F, Deubner R, Holzgrabe U (2003) Composition and impurity profile of multisource raw material of gentamicin—a comparison. Pharmeuropa 15:273–279

  10. Niessen WMA (1998) Analysis of antibiotics by liquid chromatography–mass spectrometry. J Chromatogr A 812:53–75

    Article  CAS  Google Scholar 

  11. McLaughlin LG, Henion JD (1992) Determination of aminoglycoside antibiotics by reversed-phase ion-pair high-performance liquid chromatography coupled with pulsed amperometry and ion spray mass spectrometry. J Chromatogr A 591:195–206

    Article  CAS  Google Scholar 

  12. Curiel H, Vanderaerden W, Velez H, Hoogmartens J, Van Schepdael A (2007) Analysis of underivatized gentamicin by capillary electrophoresis with UV detection. J Pharm Biomed 44:49–56

    Article  CAS  Google Scholar 

  13. Kühn K-D, Weber C, Kreis S, Holzgrabe U (2008) Evaluation of the stability of gentamicin in different antibiotic carriers using a validated MEKC method. J Pharm Biomed 48:612–618

    Article  Google Scholar 

  14. U.S. Pharmacopeial Convention (2011) Gentamicin sulfate. In: The U.S. Pharmacopeia 2011: USP 34, NF 29. U.S. Pharmacopeial Convention, Rockville, p 2959

  15. Posyniak A, Zmudzki J, Niedzielska J (2001) Sample preparation for residue determination of gentamicin and neomycin by liquid chromatography. J Chromatogr A 914:59–66

    Article  CAS  Google Scholar 

  16. Gambardella P, Punziano R, Gionti M, Guadalupi C, Mancini G, Mangia A (1985) Quantitative determination and separation of analogues of aminoglycoside antiobiotcs by high-performance liquid chromatography. J Chromatogr A 348:229–240

    Article  CAS  Google Scholar 

  17. Thomas AH, Tappin SD (1974) Separation of gentamicin complex by ion-exchange column chromatography. J Chromatogr A 97:280–283

    Article  CAS  Google Scholar 

  18. Inchauspé G, Samain D (1984) Use of perfluorinated carboxylic acids in the separation of aminoglycoside antibiotics by ion-pair reversed-phase high-performance liquid chromatography. J Chromatogr A 303:277–282

    Article  Google Scholar 

  19. Van Holthoon FL, Essers ML, Mulder PJ, Stead SL, Caldow M, Ashwin HM, Sharman M (2009) A generic method for the quantitative analysis of aminoglycosides (and spectinomycin) in animal tissue using methylated internal standards and liquid chromatography tandem mass spectrometry. Anal Chim Acta 637:135–143

    Article  Google Scholar 

  20. Heller DN, Clark SB, Righter HF (2000) Confirmation of gentamicin and neomycin in milk by weak cation-exchange extraction and electrospray ionization/ion trap tandem mass spectrometry. J Mass Spectrom 35:39–49

    Article  CAS  Google Scholar 

  21. Cherlet M, Baere SD, Backer PD (2000) Determination of gentamicin in swine and calf tissues by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. J Mass Spectrom 35:1342–1350

    Article  CAS  Google Scholar 

  22. Bogialli S, Curini R, Di Corcia A, Laganà A, Mele M, Nazzari M (2005) Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk: hot water extraction followed by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1067:93–100

    Article  CAS  Google Scholar 

  23. U.S. Pharmacopeial Convention (2014) Gentamicin sulphate. In: United States Pharmacopoeia 2014: USP37, NF32. U.S. Pharmacopeial Convention, Rockville, pp 3138–3139

  24. Council of Europe (2014) Gentamicin sulphate. In: European Pharmacopoeia (EP), 8.1. Council of Europe, Strasbourg, pp 2326–2382

  25. Ghinami C, Giuliani V, Menarini A, Abballe F, Travaini S, Ladisa T (2007) Electrochemical detection of tobramycin or gentamicin according to the European Pharmacopoeia analytical method. J Chromatogr A 1139:53–56

    Article  CAS  Google Scholar 

  26. Manyanga V, Kreft K, Divjak B, Hoogmartens J, Adams E (2008) Improved liquid chromatographic method with pulsed electrochemical detection for the analysis of gentamicin. J Chromatogr A 1189:347–354

    Article  CAS  Google Scholar 

  27. Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  Google Scholar 

  28. Gremilogianni AM, Megoulas NC, Koupparis MA (2010) Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. J Chromatogr A 1217:6646–6651

    Article  CAS  Google Scholar 

  29. Kahsay G, Song H, Van Schepdael A, Cabooter D, Adams E (2014) Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J Pharm Biomed 87:142–154

    Article  CAS  Google Scholar 

  30. Kumar P, Rubies A, Companyó R, Centrich F (2012) Hydrophilic interaction chromatography for the analysis of aminoglycosides. J Sep Sci 35:498–504

    Article  CAS  Google Scholar 

  31. Tao Y, Chen D, Yu H, Huang L, Liu Z, Cao X, Yan C, Pan Y, Liu Z, Yuan Z (2012) Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography–tandem mass spectrometry. Food Chem 135:676–683

    Article  CAS  Google Scholar 

  32. Kumar P, Rúbies A, Companyó R, Centrich F (2012) Determination of aminoglycoside residues in kidney and honey samples by hydrophilic interaction chromatography–tandem mass spectrometry. J Sep Sci 35:2710–2717

  33. Oertel R, Neumeister V, Kirch W (2004) Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J Chromatogr A 1058:197–201

    Article  CAS  Google Scholar 

  34. Knox JH, Kaur B, Millward GR (1986) Structure and performance of porous graphitic carbon in liquid chromatography. J Chromatogr A 352:3–25

    Article  CAS  Google Scholar 

  35. Pereira L (2008) Porous graphitic carbon as a stationary phase in HPLC: theory and applications. J Liq Chromatogr Relat Technol 31:1687–1731

    Article  CAS  Google Scholar 

  36. Barrett DA, Pawula M, Knaggs RD, Shaw PN (1998) Retention behavior of morphine and its metabolites on a porous graphitic carbon column. Chromatographia 47:667–672

    Article  CAS  Google Scholar 

  37. Bassler BJ, Kaliszan R, Hartwick RA (1989) Retention mechanisms on metallic stationary phases. J Chromatogr A 461:139–147

    Article  CAS  Google Scholar 

  38. Xu JQ, Aubry A-F (2003) Impurity profiling of non-nucleoside reverse transcriptase inhibitors by HPLC using a porous graphitic carbon stationary phase. Chromatographia 57:67–71

    Article  CAS  Google Scholar 

  39. Monser L, Trabelsi H (2003) A rapid LC method for the determination of haloperidol and its degradation products in pharmaceuticals using a porous graphitic carbon column. J Liq Chromatogr Relat Technol 26:261–271

  40. Karlsson A, Berglin M, Charron C (1998) Robustness of the chromatographic separation of alprenolol and related substances using a silica-based stationary phase and selective retention of metoprolol and related substances on a porous graphitic carbon stationary phase. J Chromatogr A 797:75–82

    Article  CAS  Google Scholar 

  41. Monser L, Darghouth F (2002) Simultaneous LC determination of paracetamol and related compounds in pharmaceutical formulations using a carbon-based column. J Pharm Biomed 27:851–860

    Article  CAS  Google Scholar 

  42. Monser L, Darghouth F (2003) Simultaneous determination of naproxen and related compounds by HPLC using porous graphitic carbon column. J Pharm Biomed 32:1087–1092

    Article  CAS  Google Scholar 

  43. Forgács E, Cserháti T (1998) Separation of steroidal drugs on porous graphitized carbon column. J Pharm Biomed 18:15–20

    Article  Google Scholar 

  44. Nazir T, Gould LA, Marriott C, Martin GP, Brown MB (1997) High performance liquid chromatography of a cyclosporin A formulation on a porous graphitic carbon column. Chromatographia 46:628–636

    Article  CAS  Google Scholar 

  45. Monser L, Darghouth F (2000) Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-epi-doxycycline in pharmaceutical products using porous graphitic carbon column. J Pharm Biomed 23:353–362

  46. Jensen PH, Karlsson NG, Kolarich D, Packer NH (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 7:1299–1310

    Article  CAS  Google Scholar 

  47. Grahek R, Zupančič-Kralj L (2009) Identification of gentamicin impurities by liquid chromatography tandem mass spectrometry. J Pharm Biomed 50:1037–1043

    Article  CAS  Google Scholar 

  48. Getek TA, Vestal ML, Alexander TG (1991) Analysis of gentamicin sulfate by high-performance liquid chromatography combined with thermospray mass spectrometry. J Chromatogr A 554:191–203

    Article  CAS  Google Scholar 

  49. Li B, Van Schepdael A, Hoogmartens J, Adams E (2011) Mass spectrometric characterization of gentamicin components separated by the new European Pharmacopoeia method. J Pharm Biomed 55:78–84

    Article  Google Scholar 

  50. Bijleveld Y, de Haan T, Toersche J, Jorjani S, van der Lee J, Groenendaal F, Dijk P, van Heijst A, Gavilanes AWD, de Jonge R, Dijkman KP, van Straaten H, Rijken M, Zonnenberg I, Cools F, Nuytemans D, Mathôt R (2014) A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study. J Chromatogr B 951–952:110–118

    Article  Google Scholar 

  51. Vučićević-Prčetić K, Cservenák R, Radulović N (2011) Development and validation of liquid chromatography tandem mass spectrometry methods for the determination of gentamicin, lincomycin, and spectinomycin in the presence of their impurities in pharmaceutical formulations. J Pharm Biomed 56:736–742

    Article  Google Scholar 

  52. Zheng C, Wang B, Wang M, Hoogmartens J, Schepdael AV, Adams E (2011) Impurity analysis of gentamicin bulk samples by improved liquid chromatography–ion trap mass spectrometry. Sci China Chem 54:1518–1528

  53. Li B, Adams E, Van Schepdael A, Hoogmartens J (2006) Analysis of unknown compounds in gentamicin bulk samples with liquid chromatography coupled with ion trap mass spectrometry. Rapid Commun Mass Spectrom 20:393–402

    Article  CAS  Google Scholar 

  54. Megoulas NC, Koupparis MA (2005) Twenty years of evaporative light scattering detection. Crit Rev Anal Chem 35:301–316

    Article  CAS  Google Scholar 

  55. Clarot I, Chaimbault P, Hasdenteufel F, Netter P, Nicolas A (2004) Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1031:281–287

    Article  CAS  Google Scholar 

  56. Megoulas NC, Koupparis MA (2004) Development and validation of a novel LC/ELSD method for the quantitation of gentamicin sulfate components in pharmaceuticals. J Pharm Biomed 36:73–79

    Article  CAS  Google Scholar 

  57. Manyanga V, Grishina O, Yun Z, Hoogmartens J, Adams E (2007) Comparison of liquid chromatographic methods with direct detection for the analysis of gentamicin. J Pharm Biomed 45:257–262

    Article  CAS  Google Scholar 

  58. Russo P, Stigliani M, Prota L, Auriemma G, Crescenzi C, Porta A, Aquino RP (2013) Gentamicin and leucine inhalable powder: what about antipseudomonal activity and permeation through cystic fibrosis mucus? Int J Pharm 440:250–255

    Article  CAS  Google Scholar 

  59. Aquino RP, Prota L, Auriemma G, Santoro A, Mencherini T, Colombo G, Russo P (2012) Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm 426:100–107

    Article  CAS  Google Scholar 

  60. Aquino RP, Auriemma G, Mencherini T, Russo P, Porta A, Adami R, Liparoti S, Porta GD, Reverchon E, Del Gaudio P (2013) Design and production of gentamicin/dextrans microparticles by supercritical assisted atomisation for the treatment of wound bacterial infections. Int J Pharm 440:188–194

    Article  CAS  Google Scholar 

  61. Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542

    Article  CAS  Google Scholar 

  62. Pereira L, Aspey S, Ritchie H (2007) High temperature to increase throughput in liquid chromatography and liquid chromatography–mass spectrometry with a porous graphitic carbon stationary phase. J Sep Sci 30:1115–1124

    Article  CAS  Google Scholar 

  63. Koivisto P, Stefansson M (2003) Retention studies of sulphated glycosaminoglycan disaccharides on porous graphitic carbon capillary columns. Chromatographia 57:37–45

    Article  CAS  Google Scholar 

  64. Kawasaki N, Ohta M, Hyuga S, Hashimoto O, Hayakawa T (1999) Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry. Anal Biochem 269:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted within the PRIN Project “Design and development of microsystems (gel-beads) for drug delivery by laminar jet break-up and dielectric treatments” financed by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca). We also received financial support from the Campania regional government under the project POR Campania FSE 2007/2013. 4-17-1; CUP B25B09000000007 (STRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Crescenzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriquez, M., Cretoso, D.S., Euterpio, M.A. et al. Fast determination of underivatized gentamicin C components and impurities by LC-MS using a porous graphitic carbon stationary phase. Anal Bioanal Chem 407, 7691–7701 (2015). https://doi.org/10.1007/s00216-015-8933-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8933-6

Keywords

Navigation