Skip to main content

Advertisement

Log in

A rapid microfluidic technique for integrated viability determination of adherent single cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we report on a novel protocol for determining the viability of individual cells in an adherent cell culture, without adversely affecting the remaining cells in the sample. This is facilitated using a freestanding microfluidic perfusion device, the Multifunctional Pipette (MFP), which generates a virtual flow cell around selected single cells. We investigated the utility on four different cell lines, NG108-15, HEK 293, PC12, and CHO, and combined the assay with a cell poration experiment, in which we apply the pore-forming agent digitonin, followed by fluorescein diphosphate, a pre-fluorescent substrate for alkaline phosphatase, in order to monitor intracellular enzyme activity. The cell viability was instantly assessed through simultaneous perfusion with fluorescein diacetate (FDA) and propidium iodide (PI), both being dispensed through the same superfusion device used to porate and deliver the enzyme substrate. In this fluorescence assay, viable and non-viable cells were distinguished by their green and red emission, respectively, within 10 s. In addition, the enzyme activity was monitored over time as a secondary test for cellular activity. Our findings demonstrate that this microfluidic technology-assisted approach is a facile, rapid, and reliable means to determine the viability in single-cell experiments and that viability studies can be performed routinely alongside typical substrate delivery protocols. This approach would remove the need for global cell viability testing and would enable viability studies of only the cells under experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sajitha Rajan S, Murugan K (2010) Plant Physiol Biochem 48:758

    Article  CAS  Google Scholar 

  2. Malvessi E, Carra S, Pasquali FC, Kern DB, da Silveira MM, Ayub MA (2013) J Ind Microbiol Biotechnol 40:1

    Article  CAS  Google Scholar 

  3. Hao YY, Huang WD (2004) Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30:19

    CAS  Google Scholar 

  4. Jaffe AE, Irizarry RA (2014) Genome Biol 15:R31

    Article  Google Scholar 

  5. Deng B, Wang ZM, Zhou ZH, Liu YM, Yang XL, Song J, Xiao YX (2014). Biomed Chromatogr 28:1393–1401

    Article  CAS  Google Scholar 

  6. Kovarik ML, Allbritton NL (2011) Trends Biotechnol 29:222

    Article  CAS  Google Scholar 

  7. Gao N, Wang WL, Zhang XL, Jin WR, Yin XF, Fang ZL (2006) Anal Chem 78:3213

    Article  CAS  Google Scholar 

  8. Olofsson J, Xu S, Jeffries GD, Jesorka A, Bridle H, Isaksson I, Weber SG, Orwar O (2013) Probing enzymatic activity inside single cells. Anal Chem 85:10126–10133

    Article  CAS  Google Scholar 

  9. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nature 450:1230

    Article  CAS  Google Scholar 

  10. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Nat Biotechnol 27:275

    Article  CAS  Google Scholar 

  11. Pilbrough W, Munro TP, Gray P (2009) Plos One 4:e8432

    Article  Google Scholar 

  12. Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  13. Thivierge JP, Cisek P (2008) J Neurosci 28:7968

    Article  CAS  Google Scholar 

  14. Lawrence T, Natoli G (2011) Nat Rev Immunol 11:750

    Article  CAS  Google Scholar 

  15. Sarthy V, Ripps H (2001) The retinal Mu\0308ller cell: structure and function. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  16. Bisswanger H (2008) Enzyme kinetics: principles and methods; 2nd, rev. Weinheim, Wiley-VCH

    Book  Google Scholar 

  17. Coleman JE (1992) Annu Rev Biophys Biomol Struct 21:441

    Article  CAS  Google Scholar 

  18. Berezin VA (2010) Structure and function of the neural cell adhesion molecule NCAM. Springer, New York

    Book  Google Scholar 

  19. Wang Z, Kim MC, Marquez M, Thorsen T (2007) Lab Chip 7:740

    Article  CAS  Google Scholar 

  20. Liberale C, Cojoc G, Bragheri F, Minzioni P, Perozziello G, La Rocca R, Ferrara L, Rajamanickam V, Di Fabrizio E, Cristiani I (2013) Sci Rep 3:1258

    CAS  Google Scholar 

  21. Kobel S, Limacher M, Gobaa S, Laroche T, Lutolf MP (2009) Langmuir 25:8774

    Article  CAS  Google Scholar 

  22. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Anal Chem 75:3581

    Article  CAS  Google Scholar 

  23. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Proc Natl Acad Sci U S A 106:14195

    Article  CAS  Google Scholar 

  24. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Lab Chip 8:519

    Article  CAS  Google Scholar 

  25. Stoddart MJ (2011) Mammalian cell viability: methods and protocols. Springer, New York

    Book  Google Scholar 

  26. Cardella JA, Keshavjee S, Mourgeon E, Cassivi SD, Fischer S, Isowa N, Slutsky A, Liu M (1985) J Appl Physiol 2000, 89, 1553

  27. O’Riordan TC, Buckley D, Ogurtsov V, O’Connor R, Papkovsky DB (2000) Anal Biochem 278:221

    Article  Google Scholar 

  28. Dutot M, Pouzaud F, Larosche I, Brignole-Baudouin F, Warnet JM, Rat P (2006) Invest Ophthalmol Vis Sci 47:2812

    Article  Google Scholar 

  29. Dzamukova MR, Zamaleeva AI, Ishmuchametova DG, Osin YN, Kiyasov AP, Nurgaliev DK, Ilinskaya ON, Fakhrullin RF (2011) Langmuir 27:14386

    Article  CAS  Google Scholar 

  30. Konnova SA, Kahraman M, Zamaleeva AI, Culha M, Paunov VN, Fakhrullin RF (2011) Colloids Surf B Biointerfaces 88:656

    Article  CAS  Google Scholar 

  31. Wu J, Wang X, Ying F, Hu G, Li D, Yu H, Han X (2011) Ecotoxicol Environ Saf 74:1756

    Article  CAS  Google Scholar 

  32. Joux F, Lebaron P (2000) Microbes Infect 2:1523

    Article  CAS  Google Scholar 

  33. Hotz MA, Gong J, Traganos F, Darzynkiewicz Z (1994) Cytometry 15:237

    Article  CAS  Google Scholar 

  34. Ross DD, Joneckis CC, Ordonez JV, Sisk AM, Wu RK, Hamburger AWNRE, Nora RE (1989) Cancer Res 49:3776

    CAS  Google Scholar 

  35. Borra RC, Lotufo MA, Gagioti SM, Barros Fde M, Andrade PM (2009) Braz Oral Res 23:255

    Article  Google Scholar 

  36. Buzatu DA, Moskal TJ, Williams AJ, Cooper WM, Mattes WB, Wilkes JG (2014) Plos One 9:e94254

    Article  Google Scholar 

  37. Ainla A, Gozen I, Hakonen B, Jesorka A (2013) Sci Rep 3:2743

    Google Scholar 

  38. Ainla A, Jeffries GD, Brune R, Orwar O, Jesorka A (2012) Lab Chip 12:1255

    Article  CAS  Google Scholar 

  39. Dourmashkin RR, Dougherty RM, Harris R (1962) J Nature 194:1116

    Article  CAS  Google Scholar 

  40. Schulz I (1990) Methods Enzymol 192:280

    Article  CAS  Google Scholar 

  41. Wegrzyn I, Ainla A, Jeffries GD, Jesorka A (2013) Sensors Basel 13:4289

    Article  CAS  Google Scholar 

  42. Ahemaiti A, Ainla A, Jeffries GD, Wigstrom H, Orwar O, Jesorka A, Jardemark K (2013) J Neurosci Methods 219:292

    Article  CAS  Google Scholar 

  43. Aridor-Piterman O, Lavie Y, Liscovitch M (1992) Eur J Biochem 204:561

    Article  CAS  Google Scholar 

  44. Peppers SC, Holz RW (1986) J Biol Chem 261:14665

    CAS  Google Scholar 

  45. Khan N, Shen J, Chang TY, Chang CC, Fung PC, Grinberg O, Demidenko E, Swartz H (2003) Biochemistry 42:23

    Article  CAS  Google Scholar 

  46. Heslop-Harrison J, Heslop-Harrison Y (1970) Stain Technol 45:115

    CAS  Google Scholar 

  47. Calich VL, Purchio A, Paula CR (1979) Mycopathologia 66:175

    Article  CAS  Google Scholar 

  48. Swisher R, Carroll GC (1980) Microb Ecol 6:217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Owe Orwar for his support. This research was funded by the European Research Council (ERC), the Chalmers Area of Advance in Nanoscience and Technology, The Nordic Council of Ministers (Nordforsk), and the Swedish Research Council (VR).

Conflict of interest

Gavin D. M. Jeffries and Aldo Jesorka are both founders of Fluicell AB. No payments or financial gain was a reason for, or a direct consequence of, the research contained within the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Jesorka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Kim, A., Jeffries, G.D.M. et al. A rapid microfluidic technique for integrated viability determination of adherent single cells. Anal Bioanal Chem 407, 1295–1301 (2015). https://doi.org/10.1007/s00216-014-8364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8364-9

Keywords

Navigation