Skip to main content
Log in

Direct online HPLC-CV-AFS method for traces of methylmercury without derivatisation: a matrix-independent method for urine, sediment and biological tissue samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a global pollutant which occurs in different species, with methylmercury (MeHg) being the critical compound due to its neurotoxicity and bioaccumulation through the food chain. Methods for trace speciation of MeHg are therefore needed for a vast range of sample matrices, such as biological tissues, fluids, soils or sediments. We have previously developed an ultra-trace speciation method for methylmercury in water, based on a preconcentration HPLC cold vapour atomic fluorescence spectrometry (HPLC-CV-AFS) method. The focus of this work is mercury speciation in a variety of sample matrices to assess the versatility of the method. Certified reference materials were used where possible, and samples were spiked where reference materials were not available, e.g. human urine. Solid samples were submitted for commonly used digestion or extraction processes to obtain a liquid sample for injection into the analytical system. For MeHg in sediment samples, an extraction procedure was adapted to accommodate MeHg separation from high amounts of Hg2+ to avoid an overload of the column. The recovery for MeHg determination was found to be in the range of 88–104 % in fish reference materials (DOLT-2, DOLT-4, DORM-3), lobster (TORT-2), seaweed (IAEA-140/TM), sediments (ERM®-CC580) and spiked urine and has been proven to be robust, reliable, virtually matrix-independent and relatively cost-effective. Applications in the ultra-trace concentration range are possible using the preconcentration up to 200 mL, while for higher MeHg-containing samples, lower volumes can be applied. A comparison was carried out between species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICP-MS) as the gold standard and HPLC-CV-AFS for biological tissues (liver, kidney and muscle of pilot whales), showing a slope of 1.008 and R 2 = 0.97, which indicates that the HPLC-CV-AFS method achieves well-correlated results for MeHg in biological tissues.

Matrix independent speciation of MeHg by selective preconcentration on a sulfur-based material

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva

    Google Scholar 

  2. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662. doi:10.1080/10408440600845619

    Article  CAS  Google Scholar 

  3. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120(6):799–806. doi:10.1289/ehp.1104494

    Article  CAS  Google Scholar 

  4. Office of the Federal Register National Archives and Records Administration (2010) Protection of environment. 40 CFR 141.51. http://www.ecfr.gov/cgi-bin/text-idx?SID=1938534348d0412a33bc1d1a185f54c7&tpl=/ecfrbrowse/Title40/40cfr141_main_02.tpl. Accessed 28 Aug 2014

  5. U.S. Environmental Protection Agency (1998) EPA method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry, EPA publication number: 821R01020. http://water.epa.gov/scitech/methods/cwa/metals/mercury/loader.cfm?csModule=security/getfile&PageID=28876. Accessed 28 Aug 2014

  6. Westoo G (1968) Determination of methylmercury salts in various kinds of biological material. Acta Chem Scand 22(7):2277. doi:10.3891/acta.chem.scand.22-2277

    Article  CAS  Google Scholar 

  7. Bowles KC, Apte SC (2000) Determination of methylmercury in sediments by steam distillation/aqueous-phase ethylation and atomic fluorescence spectrometry. Anal Chim Acta 419(2):145–151. doi:10.1016/s0003-2670(00)00997-1

    Article  CAS  Google Scholar 

  8. Balshaw S, Edwards J, Daughtry B, Ross K (2007) Mercury in seafood: mechanisms of accumulation and consequences for consumer health. Rev Environ Health 22(2):91–113

    CAS  Google Scholar 

  9. Storelli MM, Stuffler RG, Marcotrigiano GO (2002) Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Addit Contam 19(8):715–720. doi:10.1080/02652030210153569

    Article  CAS  Google Scholar 

  10. Jagtap R, Krikowa F, Maher W, Foster S, Ellwood M (2011) Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS. Talanta 85(1):49–55. doi:10.1016/j.talanta.2011.03.022

    Article  CAS  Google Scholar 

  11. Rodríguez Martín-Doimeadios RC, Krupp E, Amouroux D, Donard OFX (2002) Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS. Anal Chem 74(11):2505–2512. doi:10.1021/ac011157s

    Article  Google Scholar 

  12. Clémens S, Monperrus M, Donard OX, Amouroux D, Guérin T (2011) Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data. Anal Bioanal Chem 401(9):2699–2711. doi:10.1007/s00216-011-5040-1

    Article  Google Scholar 

  13. Snell JP, Quetel CR (2005) SI-traceable certification of methylmercury amount content in a tuna material. J Anal At Spectrom 20(5):447–454. doi:10.1039/B418505F

    Article  CAS  Google Scholar 

  14. Falter R (1999) Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: part 1: localisation of the compounds effecting the abiotic mercury methylation. Chemosphere 39(7):1051–1073. doi:10.1016/s0045-6535(99)00178-2

    Article  CAS  Google Scholar 

  15. Gibičar D, Logar M, Horvat N, Marn-Pernat A, Ponikvar R, Horvat M (2007) Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent. Anal Bioanal Chem 388(2):329–340. doi:10.1007/s00216-007-1208-0

    Article  Google Scholar 

  16. Logar M, Horvat M, Akagi H, Pihlar B (2002) Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters. Anal Bioanal Chem 374(6):1015–1021. doi:10.1007/s00216-002-1501-x

    Article  CAS  Google Scholar 

  17. Quetel CR, Snell JP, Aregbe Y, Abranko L, Jokai Z, Brunori C, Morabito R, Hagan W, Azemard S, Wyse E, Fajon V, Horvat M, Logar M, Donard OFX, Krupp E, Entwisle J, Hearn R, Schantz M, Inagaki K, Takatsu A, Grinberg P, Willie S, Dimock B, Hintelmann H, Zhu J, Blanco Gonzalez E, Centineo G, Ignacio Garcia Alonso J, Sanz-Medel A, Bjorn E (2005) Methylmercury in tuna: demonstrating measurement capabilities and evaluating comparability of results worldwide from the CCQM P-39 comparison. J Anal At Spectrom 20(10):1058–1066. doi:10.1039/B505368D

    Article  CAS  Google Scholar 

  18. Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta B At Spectrosc 60(2):151–207. doi:10.1016/j.sab.2005.01.005

    Article  Google Scholar 

  19. Davis WC, Christopher SJ, Pugh R, Donard OFX, Krupp E, Point D, Horvat M, Gibičar D, Kljakovic-Gaspic Z, Porter B, Schantz M (2007) Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis). Anal Bioanal Chem 387(7):2335–2341. doi:10.1007/s00216-006-1106-x

    Article  CAS  Google Scholar 

  20. Brombach C-C, Chen B, Corns WT, Feldmann J, Krupp E (2014) Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapour-atomic fluorescence spectrometry. doi: 10.1016/j.sab.2014.09.014

  21. Rodríguez Martín-Doimeadios RC, Stoichev T, Krupp E, Amouroux D, Holeman M, Donard OFX (2002) Working methods paper: micro-scale preparation and characterization of isotopically enriched monomethylmercury. Appl Organomet Chem 16(10):610–615. doi:10.1002/aoc.350

    Article  Google Scholar 

  22. Phelps RW, Clarkson TW, Kershaw TG, Wheatley B (1980) Interrelationships of blood and hair mercury concentrations in a North American population exposed to methylmercury. Arch Environ Health: an Int J 35(3):161–168. doi:10.1080/00039896.1980.10667486

    Article  CAS  Google Scholar 

  23. Kehrig HA, Malm O, Akagi H (1997) Methylmercury in hair samples from different riverine groups, Amazon, Brazil. Water Air Soil Pollut 97(1–2):17–29

    CAS  Google Scholar 

  24. Mason HJ, Hindell P, Williams NR (2001) Biological monitoring and exposure to mercury. Occup Med-Oxf 51(1):2–11. doi:10.1093/occmed/51.1.2

    Article  CAS  Google Scholar 

  25. Višnjevec AM, Kocman D, Horvat M (2014) Human mercury exposure and effects in Europe. Environ Toxicol Chem 33(6):1259–1270. doi:10.1002/etc.2482

    Article  Google Scholar 

  26. Alli A, Jaffé R, Jones R (1994) Analysis of organomercury compounds in sediments by capillary GC with atomic fluorescence detection. J High Resolut Chromatogr 17(11):745–748. doi:10.1002/jhrc.1240171102

    Article  CAS  Google Scholar 

  27. Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2001) Microwave treatment of biological samples for methylmercury determination by high performance liquid chromatography-cold vapour atomic fluorescence spectrometry. Analyst 126(9):1583–1587. doi:10.1039/B104041N

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Christoph-Cornelius Brombach is grateful for financial support by PS Analytical, Kent, UK, and the College of Physical Sciences (University of Aberdeen) to carry out his PhD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Krupp.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brombach, CC., Gajdosechova, Z., Chen, B. et al. Direct online HPLC-CV-AFS method for traces of methylmercury without derivatisation: a matrix-independent method for urine, sediment and biological tissue samples. Anal Bioanal Chem 407, 973–981 (2015). https://doi.org/10.1007/s00216-014-8254-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8254-1

Keywords

Navigation