Skip to main content
Log in

Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite. Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by LC–IDA–ICP–MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of enriched Se isotopes as tracers has provided important information on Se metabolism. However, selenium isotopes are expensive and difficult to obtain. A simple and cheap strategy based on the production of [77Se]-methylselenocysteine ([77Se]-MeSeCys) when preparing sauerkraut in the presence of [77Se]-selenite was developed. The resulting [77Se]-MeSeCys was used for evaluating the metabolic transformation of MeSeCys in Wistar rats, by feeding them with an AIN-93 M diet containing 20 % sauerkraut enriched in [77Se]-MeSeCys. Organs (liver, kidney, brain, testicles, and heart) were obtained after seven days of treatment and subjected to total selenium and selenium-speciation analysis by high-performance liquid chromatography coupled with isotope-dilution-analysis inductively-coupled-plasma mass spectrometry (HPLC–IDA–ICP–MS). Analysis of 77Se-labeled organs revealed a prominent increase (more than 100 % Se-level enhancement) of selenium in the kidney and heart, whereas in the liver selenium concentration only increased by up to 20 % and it remained constant in the brain and testicles. 77Se-enriched-sauerkraut supplementation does not alter the concentration of other essential elements in comparison to controls except for in the heart and kidney, in which selenium was positively correlated with Mg, Zn, Cu, and Mo. HPLC–ICP–MS analysis of hydrolyzed extracts after carbamidomethylation of the 77Se-labeled organs revealed the presence of [77Se]-SeCys and an unknown Se-containing peak, the identity of which could not be verified by electrospray-ionization (ESI)-MS–MS. Low amounts of [77Se]-MeSeCys were found in 77Se-labeled liver and kidney extracts, suggesting the incorporation of this selenium species in its intact form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    Article  CAS  Google Scholar 

  2. Abdulah R, Miyazaki K, Nakazawa M, Koyama H (2005) Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol 19:141–150

    Article  CAS  Google Scholar 

  3. Jackson MI, Combs GF Jr (2008) Selenium and anticarcinogenesis: underlying mechanisms. Curr Opin Clin Nutr Metab Care 11:718–726

    Article  CAS  Google Scholar 

  4. Pedrero Z, Madrid Y, Cámara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): A potential dietary source of selenium. J Agric Food Chem 54:2412–2417

    Article  CAS  Google Scholar 

  5. Alzate A, Cañas B, Pérez-Mungía S, Hernández H, Pérez-Conde C, Gutiérrez AM, Cámara C (2008) Evaluation of the inorganic selenium biotransformation in Se-enriched yogurt by HPLC-ICP–MS. J Anal Food Chem 56:8728–8736

    Article  CAS  Google Scholar 

  6. Peñas E, Martínez-Villaluenga C, Frías J, Sánchez-Martínez MJ, Pérez-Corona MT, Madrid Y, Cámara C, Vidal Valverde C (2012) Se improves índole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chem 132:907–914

    Article  Google Scholar 

  7. Alzate A, Pérez-Conde C, Gutiérrez AM, Cámara C (2010) Selenium-enriched fermented milk: A suitable dairy product to improve the selenium intake for humans. Int Dairy J 20:761–769

    Article  CAS  Google Scholar 

  8. Sánchez-Martínez M, da Galvao P, Silva E, Pérez-Corona T, Cámara FSLC, Madrid Y (2012) Selenite biotransformation during brewing. Evaluation by HPLC-ICP–MS. Talanta 88:272–276

    Article  Google Scholar 

  9. Szpunnar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  Google Scholar 

  10. Ip C, Dong Y, Ganther HE (2002) New concepts in selenium chemoprevention. Cancer Metastasis Rev 21:281–289

    Article  CAS  Google Scholar 

  11. González-Iglesias H, Fernández-Sánchez ML, Rodríguez-Castrillón JA, García-Alonso JI, López-Sastre J, Sanz-Medel A (2009) Enriched stable isotopes and isotope pattern deconvolution for quantitative speciation of endogenous and exogenous selenium in rat urine by HPLC-ICP–MS. J Anal At Spectrom 24:460–468

    Article  Google Scholar 

  12. Suzuki Y, Hashiura Y, Sakai T, Yamamoto T, Matsukawa T, Shinohara A, Furuta N (2013) Selenium metabolism and excretion in mice after injection of 82-Se-enriched selenomethionine. Metallomics 5:445–452

    Article  CAS  Google Scholar 

  13. Peñas E, Frías J, Martínez-Villaluenga C, Vidal Valverde C (2011) Bioactive compounds, myrosinase activity and antioxidant capacity of White cabbages grown in different locations of Spain. J Agric Food Chem 59:3772–3779

    Article  Google Scholar 

  14. Council EU (2010) Directive 2010/63/UE on the Protection of Animals used for Scientific Purposes. Official Journal of the European Union, Strasbourg

    Google Scholar 

  15. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93G purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  16. Council NR (1995) Nutrient Requirements of Laboratory Animals Fourth Revised Edition. National Academy Press, Washington

    Google Scholar 

  17. Cabañero AI, Madrid Y, Cámara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61

    Article  Google Scholar 

  18. Pedrero A, Ruiz–Encinar J, Madrid Y, Cámara C (2007) Application of species-specific isotope dilution analysis to the correction for selenomethionine oxidation in Se-enriched yeast simple extracts during storage. J Anal Atom Spectrom 22:1061–1066

    Article  CAS  Google Scholar 

  19. Hinojosa-Reyes L, Marchante-Gayón JM, García-Alonso JI, Sanz-Medel A (2003) Determination of selenium in biological materials by isotope dilution analysis with an octapole reaction system ICP–MS. J Anal Atom Spectrom 18:11–16

    Article  CAS  Google Scholar 

  20. Kirby JK, Lyons GH, Karkkainen MP (2008) Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and revered phase ion pairing-inductively coupled plasma-mass spectrometry. J Agric Food Chem 56:1772–1779

    Article  CAS  Google Scholar 

  21. García-Alonso JI, Rodríguez P (2011) In: C. Cámara C, Pérez-Conde C (eds) Análisis químico de trazas, Editorial Síntesis S.A., Spain

  22. Bierla K, Dernovics M, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Anal Bioanal Chem 390:1789–1798

    Article  CAS  Google Scholar 

  23. Pedrero Z, Murillo S, Cámara C, Schram E, Luten JB, Feldmann I, Jakubowski N, Madrid Y (2011) Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet. J Anal Atom Spectrom 26:116–125

    Article  CAS  Google Scholar 

  24. Otha Y, Suzuki N, Kobayashi Y, Hirano S (2011) Rapid speciation and quantification of selenium compounds by HPLC-ICP MS using multiple standards labelled with different isotopes. Isot Environ Health 47:330–340

    Article  Google Scholar 

  25. Ciardullo S, Aureli F, Coni E, Guandalini E, Iosi F, Raggi A, Rufo A, Cubadda F (2008) Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth. J Agric Food Chem 56:2442–2451

    Article  CAS  Google Scholar 

  26. Behne D, Weiler H, Kyriakopoulos A (1996) Effects of selenium deficiency on testicular morphology and function in rats. J Reprod Fertil 106:291–297

    Article  CAS  Google Scholar 

  27. Patching SG, Gardiner RHE (1999) Recent developments in selenium metabolism and chemical speciation: A review. J Trace Elem Med Biol 13:193–214

    Article  CAS  Google Scholar 

  28. Behne D, Weiss-Nowak C, Kalcklösch M, Westphal C, Gessner H, Kyriakopoulos A (1995) A Studies on the distribution and characteristics of new mammalian selenium-containing proteins. Analyst 120:823–825

    Article  CAS  Google Scholar 

  29. Cabañero AI, Madrid Y, Cámara C (2005) Study of mercury-selenium interaction in chicken liver by size exclusion chromatography inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 20:847–855

    Article  Google Scholar 

  30. Zoidis AC, Pappas E, Georgiou CA, Demiris N, Surai PF, Fegeros K (2011) Influence of organic selenium supplementation on the accumulation of toxic and essential elements involved in the antioxidant system of chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:446–454

    Article  Google Scholar 

  31. Suzuki KT, Doi C, Suzuki N (2006) Metabolism of 76Se-methylselenocystine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicol Appl Pharmacol 217:185–195

    Article  CAS  Google Scholar 

  32. Suzuki KT, Somekawa L, Suzuki N (2006) Distribution and reuse of 76Se-selenosugar in selenium-deficient rats. Toxicol Appl Pharmacol 216:303–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Complutense University Group of Trace and Speciation Analysis thanks the Spanish Commission of Science and Technology (CTQ2011-22732), the Community of Madrid, Spain, and the European Community for funding the FEDER programme (S2010/AGR-1464, ANALYSIC II). María Sánchez-Martínez would also like to thank the Spanish Government for a doctoral fellowship (CTQ2008-05925). This research was also funded by project AGL2007-62044 from the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Madrid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Martínez, M., Pérez-Corona, T., Martínez-Villaluenga, C. et al. Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite. Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by LC–IDA–ICP–MS. Anal Bioanal Chem 406, 7949–7958 (2014). https://doi.org/10.1007/s00216-014-8224-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8224-7

Keywords

Navigation