Skip to main content
Log in

Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Macrophages are phagocytic cells which are involved in the non-specific immune defense. Lipid uptake and storage behavior of macrophages also play a key role in the development of atherosclerotic lesions within walls of blood vessels. The allocation of exogenous lipids such as fatty acids in the blood stream dictates the accumulation and quantity of lipids within macrophages. In case of an overexposure, macrophages transform into foam cells because of the large amount of lipid droplets in the cytoplasm. Raman micro-spectroscopy is a powerful tool for studying single cells due to the combination of microscopic imaging with spectral information. With a spatial resolution restricted by the diffraction limit, it is possible to visualize lipid droplets within macrophages. With stable isotopic labeling of fatty acids with deuterium, the uptake and storage of exogenously provided fatty acids can be investigated. In this study, we present the results of time-dependent Raman spectroscopic imaging of single THP-1 macrophages incubated with deuterated arachidonic acid. The polyunsaturated fatty acid plays an important role in the cellular signaling pathway as being the precursor of icosanoids. We show that arachidonic acid is stored in lipid droplets but foam cell formation is less pronounced as with other fatty acids. The storage efficiency in lipid droplets is lower than in cells incubated with deuterated palmitic acid. We validate our results with gas chromatography and gain information on the relative content of arachidonic acid and its metabolites in treated macrophages. These analyses also provide evidence that significant amounts of the intracellular arachidonic acid is elongated to adrenic acid but is not metabolized any further. The co-supplementation of deuterated arachidonic acid and deuterated palmitic acid leads to a non-homogenous storage pattern in lipid droplets within single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lorkowski S, Cullen P (2007) Atherosclerosis: pathogenesis, clinical features and treatment. Wiley, Chichester

    Google Scholar 

  2. Ohsaki Y, Suzuki M, Fujimoto T (2014) Open questions in lipid droplet biology. Chem Biol 21:86–96

    Article  CAS  Google Scholar 

  3. Melo RC, D'Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556

    Article  CAS  Google Scholar 

  4. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082

    Article  CAS  Google Scholar 

  5. Martins de Lima T, Cury-Boaventura MF, Giannocco G, Nunes MT, Curi R (2006) Comparative toxicity of fatty acids on a macrophage cell line (J774). Clin Sci 111:307–317

    Article  CAS  Google Scholar 

  6. Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljkovic M, Krafft C, Popp J (2013) Molecular pathology via IR and Raman spectral imaging. J Biophotonics 6:855–886

    Article  CAS  Google Scholar 

  7. Krafft C, Dietzek B, Popp J (2009) Raman and CARS microspectroscopy of cells and tissues. Analyst 134:1046–1057

    Article  CAS  Google Scholar 

  8. Lattermann A, Matthäus C, Bergner N, Beleites C, Romeike BF, Krafft C, Brehm BR, Popp J (2013) Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. J Biophotonics 6:110–121

    Article  CAS  Google Scholar 

  9. Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108:3809–3814

    Article  CAS  Google Scholar 

  10. Matthäus C, Dochow S, Bergner G, Lattermann A, Romeike BF, Marple ET, Krafft C, Dietzek B, Brehm BR, Popp J (2012) In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-stokes Raman scattering microscopic imaging on a rabbit model. Anal Chem 84:7845–7851

    Article  Google Scholar 

  11. Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol Biomol Spectrosc 61:1529–1535

    Article  Google Scholar 

  12. Neugebauer U, Bocklitz T, Clement JH, Krafft C, Popp J (2010) Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst 135:3178–3182

    Article  CAS  Google Scholar 

  13. Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11:1484–1490

    Article  CAS  Google Scholar 

  14. Hedegaard M, Krafft C, Ditzel HJ, Johansen LE, Hassing S, Popp J (2010) Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps. Anal Chem 82:2797–2802

    Article  CAS  Google Scholar 

  15. Chan JW (2013) Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J Biophotonics 6:36–48

    Article  CAS  Google Scholar 

  16. Kirchner SR, Ohlinger A, Pfeiffer T, Urban AS, Stefani FD, Deak A, Lutich AA, Feldmann J (2012) Membrane composition of jetted lipid vesicles: a Raman spectroscopy study. J Biophotonics 5:40–46

    Article  CAS  Google Scholar 

  17. Matthäus C, Schubert S, Schmitt M, Krafft C, Dietzek B, Schubert US, Popp J (2013) Resonance Raman spectral imaging of intracellular uptake of beta-carotene loaded poly(D, L-lactide-co-glycolide) nanoparticles. ChemPhysChem 14:155–161

    Article  Google Scholar 

  18. Schie IW, Nolte L, Pedersen TL, Smith Z, Wu J, Yahiatene I, Newman JW, Huser T (2013) Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst 138:6662–6670

    Article  CAS  Google Scholar 

  19. Matthäus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J (2012) Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Anal Chem 84:8549–8556

    Article  Google Scholar 

  20. Caruso D, Rise P, Galella G, Regazzoni C, Toia A, Galli G, Galli C (1994) Formation of 22 and 24 carbon 6-desaturated fatty acids from exogenous deuterated arachidonic acid is activated in THP-1 cells at high substrate concentrations. FEBS Lett 343:195–199

    Article  CAS  Google Scholar 

  21. Slipchenko MN, Le TT, Chen H, Cheng JX (2009) High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. J Phys Chem B 113:7681–7686

    Article  CAS  Google Scholar 

  22. Brash AR, Ingram CD (1986) Lipoxygenase metabolism of endogenous and exogenous arachidonate in leukocytes: GC-MS analyses of incubations in H2(18)O buffers. Prostaglandins Leukot Med 23:149–154

    Article  CAS  Google Scholar 

  23. Gazi E, Harvey TJ, Brown MD, Lockyer NP, Gardner P, Clarke NW (2009) A FTIR microspectroscopic study of the uptake and metabolism of isotopically labelled fatty acids by metastatic prostate cancer. Vib Spectrosc 50:99–105

    Article  CAS  Google Scholar 

  24. Gazi E, Gardner P, Lockyer NP, Hart CA, Brown MD, Clarke NW (2007) Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J Lipid Res 48:1846–1856

    Article  CAS  Google Scholar 

  25. Brash AR (2001) Arachidonic acid as a bioactive molecule. J Clin Invest 107:1339–1345

    Article  CAS  Google Scholar 

  26. Spector AA (1999) Essentiality of fatty acids. Lipids 34(Suppl):S1–S3

    Article  CAS  Google Scholar 

  27. Perez R, Matabosch X, Llebaria A, Balboa MA, Balsinde J (2006) Blockade of arachidonic acid incorporation into phospholipids induces apoptosis in U937 promonocytic cells. J Lipid Res 47:484–491

    Article  CAS  Google Scholar 

  28. van Manen HJ, Kraan YM, Roos D, Otto C (2005) Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci U S A 102:10159–10164

    Article  Google Scholar 

  29. Schnoor M, Cullen P, Lorkowski J, Stolle K, Robenek H, Troyer D, Rauterberg J, Lorkowski S (2008) Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J Immunol 180:5707–5719

    Article  CAS  Google Scholar 

  30. Schnoor M, Buers I, Sietmann A, Brodde MF, Hofnagel O, Robenek H, Lorkowski S (2009) Efficient non-viral transfection of THP-1 cells. J Immunol Methods 344:109–115

    Article  CAS  Google Scholar 

  31. Winter ME (1999) N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc SPIE 3753:266–275

    Article  Google Scholar 

  32. Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Acc 130:1249–1260

    Article  CAS  Google Scholar 

  33. Boelens HF, Dijkstra RJ, Eilers PH, Fitzpatrick F, Westerhuis JA (2004) New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J Chromatogr A 1057:21–30

    Article  CAS  Google Scholar 

  34. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  35. Kraft J, Collomb M, Mockel P, Sieber R, Jahreis G (2003) Differences in CLA isomer distribution of cow's milk lipids. Lipids 38:657–664

    Article  CAS  Google Scholar 

  36. Chan JW, Motton D, Rutledge JC, Keim NL, Huser T (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Anal Chem 77:5870–5876

    Article  CAS  Google Scholar 

  37. Comai K, Farber SJ, Paulsrud JR (1975) Analyses of renal medullary lipid droplets from normal, hydronephrotic, and indomethacin treated rabbits. Lipids 10:555–561

    Article  CAS  Google Scholar 

  38. Guijas C, Astudillo AM, Gil-de-Gomez L, Rubio JM, Balboa MA, Balsinde J (2012) Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta 1821:1386–1393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carsten Rohrer for conducting the GC measurements, Maria Wallert and Lisa Schmölz for the introduction into the cell culture work and Dr. Iwan W. Schie for helpful discussions. We gratefully acknowledge the financial support by the Carl Zeiss Stiftung and the “Jenaer Biochip Initative 2.0” (JBCI 2.0). The project “JBCI 2.0” (03IPT513Y) within the framework “InnoProfile-Transfer–Unternehmen Region” is supported by the Federal Ministry of Education and Research (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Additional information

Stefan Lorkowski and Jürgen Popp contributed equally to this work.

Published in the topical collection Single Cell Analysis with guest editors Petra Dittrich and Norbert Jakubowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiebing, C., Matthäus, C., Krafft, C. et al. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Anal Bioanal Chem 406, 7037–7046 (2014). https://doi.org/10.1007/s00216-014-7927-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7927-0

Keywords

Navigation