Skip to main content
Log in

Microstructure elucidation of historic silk (Bombyx mori) by nuclear magnetic resonance

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

1H NMR cryoporometry and solid-state 13C cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy were used to characterize the microstructure of historic and fresh silk samples. Silk is a polymeric bicomponent material composed of fibroin and water located in micropores. According to the 1H NMR cryoporometry method, the intensity of the water resonance as a function of the temperature was used to obtain the pore size distribution, which was strongly asymmetric with a well-defined maximum at 1.1 nm. Compared with the fresh silk samples, the volume of pores around 1.1 nm decreased distinctly in the historic silk, and more pores larger than 2 nm emerged accordingly. In addition, these results correlated well with solid-state 13C CP/MAS NMR spectroscopy as the percentage of random coil in the historic silk sample was much less than that in the fresh silk samples. Therefore, it is suggested that the water-filled microvoids grow larger as the random coil conformation fades away in the degradation process.

We elucidate that compared with fresh silk, the water filled micropores within historic silk grow larger as the random coil conformation fade away in the degradation process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asakura T, Demura M, Watanabe Y, Sato K (1992) 1H pulsed NMR study of Bombyx mori silk fibroin: dynamics of fibroin and of absorbed water. J Polym Sci Pol Phys 30:693–699

    Article  CAS  Google Scholar 

  2. Hu X, Kaplan D, Cebe P (2007) Effect of water on the thermal properties of silk fibroin. Thermochim Acta 461(1–2):137–144

    Article  CAS  Google Scholar 

  3. Mo C, Wu P, Chen X, Shao Z (2009) The effect of water on the conformation transition of Bombyx mori silk fibroin. Vib Spectrosc 51(1):105–109

    Article  CAS  Google Scholar 

  4. Lee KY, Ha WS (1999) DSC studies on bound water in silk fibroin/S-carboxymethyl kerateine blend films. Polymer 40(14):4131–4134

    Article  CAS  Google Scholar 

  5. Peacock EE (1996) Biodegradation and characterization of water-degraded archaeological textiles created for conservation research. Int Biodeter Biodegr 38(1):49–59

    CAS  Google Scholar 

  6. Seves A, Romanò M, Maifreni T, Sora S, Ciferri O (1998) The microbial degradation of silk: a laboratory investigation. Int Biodeter Biodegr 42(4):203–211

    CAS  Google Scholar 

  7. Tsuboi Y, Ikejiri T, Shiga S, Yamada K, Itaya A (2001) Light can transform the secondary structure of silk protein. Appl Phys A 73(5):637–640

    Article  CAS  Google Scholar 

  8. Tsuge S, Yokoi H, Ishida Y, Ohtani H, Becker MA (2000) Photodegradative changes in chemical structures of silk studied by pyrolysis–gas chromatography with sulfur chemiluminescence detection. Polym Degrad Stabil 69(2):223–227

    Article  CAS  Google Scholar 

  9. Zhang X, Vanden Berghe I, Wyeth P (2011) Heat and moisture promoted deterioration of raw silk estimated by amino acid analysis. J Cult Herit 12(4):408–411

    Article  Google Scholar 

  10. Zhu Z, Gong D (2014) Determination of the experimental conditions of the transglutaminase-mediated restoration of thermal aged silk by orthogonal experiment. J Cult Herit 15(1):18–25

    Article  Google Scholar 

  11. Zhu Z, Liu L, Gong D (2013) Transglutaminase-mediated restoration of historic silk and its ageing resistance. Herit Sci (1). doi:10.1186/2050-7445-1-13

  12. Becker MA, Magoshi Y, Sakai T, Tuross NC (1997) Chemical and physical properties of old silk fabrics. Stud Conserv 42(1):27–37

    CAS  Google Scholar 

  13. Garside P, Wyeth P (2007) Crystallinity and degradation of silk: correlations between analytical signatures and physical condition on ageing. Appl Phys A 89(4):871–876

    Article  CAS  Google Scholar 

  14. Gong D, Yang H (2013) The discovery of free radicals in ancient silk textiles. Polym Degrad Stabil 98(9):1780–1783

    Article  CAS  Google Scholar 

  15. Li M, Zhao Y, Tong T, Hou X, Fang B, Wu S, Shen X, Tong H (2013) Study of the degradation mechanism of Chinese historic silk (Bombyx mori) for the purpose of conservation. Polym Degrad Stabil 98(3):727–735

    Article  CAS  Google Scholar 

  16. Vanden Berghe I (2012) Towards an early warning system for oxidative degradation of protein fibres in historical tapestries by means of calibrated amino acid analysis. J Archaeol Sci 39(5):1349–1359

    Article  CAS  Google Scholar 

  17. Zhang X, Yuan S (2010) Measuring quantitatively the deterioration degree of ancient silk textiles by viscometry. Chin J Chem 28(4):656–662

    Article  CAS  Google Scholar 

  18. Zhu Z, Chen H, Li L, Gong D, Gao X, Yang J, Zhao X, Ji K (2013) Biomass spectrometry identification of the fibre material in the pall imprint excavated from grave M1, Peng-state Cemetery, Shanxi. China Archaeometry. doi:10.1111/arcm.12029

    Google Scholar 

  19. Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cem Concr Res 29(6):933–943

    Article  CAS  Google Scholar 

  20. Groen JC, Peffer LA, Pérez-Ramírez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor Mesopor Mat 60(1):1–17

    Article  CAS  Google Scholar 

  21. Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433(1–2):27–50

    Article  CAS  Google Scholar 

  22. Gregory DM, Gerald RE II, Botto RE (1998) Pore-structure determinations of silica aerogels by 129Xe NMR spectroscopy and imaging. J Magn Reson 131(2):327–335

    Article  CAS  Google Scholar 

  23. Hansen EW, Schmidt R, Stocker M (1996) Pore structure characterization of porous silica by 1H NMR using water benzene and cyclohexane as probe molecules. J Phys Chem 100(27):11396–11401

    Article  CAS  Google Scholar 

  24. Hansen EW, Stocker M, Schmidt R (1996) Low-temperature phase transition of water confined in mesopores probed by NMR. Influence on pore size distribution. J Phys Chem 100(6):2195–2200

    Article  CAS  Google Scholar 

  25. Aksnes DW, Forland K, Kimtys L, Stocker M (2001) Pore-size determination of mesoporous materials by 1H nmr spectroscopy. Appl Magn Reson 20:507–517

    Article  CAS  Google Scholar 

  26. Aksnes DW, Kimtys L (2004) 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution. Solid State Nucl Magn Reson 25(1–3):146–152

    Article  CAS  Google Scholar 

  27. Hansen EW, Fonnum G, Weng E (2005) Pore morphology of porous polymer particles probed by NMR relaxometry and NMR cryoporometry. J Phys Chem B 109(51):24295–24303

    Article  CAS  Google Scholar 

  28. Jeon JD, Kim SJ, Kwak SY (2008) 1H nuclear magnetic resonance (NMR) cryoporometry as a tool to determine the pore size distribution of ultrafiltration membranes. J Membrane Sci 309(1–2):233–238

    Article  CAS  Google Scholar 

  29. Khokhlov AG, Valiullin RR, Kärger J, Zubareva NB, Stepovich MA (2008) Estimation of pore sizes in porous silicon by scanning electron microscopy and NMR cryoporometry. J Surf Invest X-Ray 2(6):919–922

    Article  Google Scholar 

  30. Ryu SY, Kim DS, Jeon JD, Kwak SY (2010) Pore size distribution analysis of mesoporous TiO2 spheres by 1H nuclear magnetic resonance (NMR) cryoporometry. J Phys Chem C 114(41):17440–17445

    Article  CAS  Google Scholar 

  31. Capitani D, Proietti N, Ziarelli F, Segre AL (2002) NMR study of water-filled pores in one of the most widely used polymeric material: the paper. Macromolecules 35(14):5536–5543

    Article  CAS  Google Scholar 

  32. Viel S, Capitani D, Proietti N, Ziarelli F, Segre AL (2004) NMR spectroscopy applied to the cultural heritage: a preliminary study on ancient wood characterisation. Appl Phys A 79(2):357–361

    Article  CAS  Google Scholar 

  33. Topgaard D, Söderman O (2001) Diffusion of water absorbed in cellulose fibers studied with 1H NMR. Langmuir 17(9):2694–2702

    Article  CAS  Google Scholar 

  34. Östlund Å, Köhnke T, Nordstierna L, Nydén M (2010) NMR cryoporometry to study the fiber wall structure and the effect of drying. Cellulose 17(2):321–328

    Article  Google Scholar 

  35. Mikhalovsky SV, Gun'ko VM, Bershtein VA, Turov VV, Egorova LM, Morvan C, Mikhalovska LI (2012) A comparative study of air-dry and water swollen flax and cotton fibres. RSC Adv 2(7):2868–2874

    Article  CAS  Google Scholar 

  36. Perkins EL, Batchelor WJ (2012) Water interaction in paper cellulose fibres as investigated by NMR pulsed field gradient. Carbohyd Polym 87(1):361–367

    Article  CAS  Google Scholar 

  37. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161

    Article  CAS  Google Scholar 

  38. Schmidt R, Hansen EW, Stocker M, Akporiaye D, Ellestad OH (1995) Pore size determination of MCM-41 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study. J Am Chem Soc 117(14):4049–4056

    Article  CAS  Google Scholar 

  39. Thurber KR, Tycko R (2009) Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin–lattice relaxation rate of 79Br in KBr powder. J Magn Reson 196(1):84–87

    Article  CAS  Google Scholar 

  40. Jackson CL, McKenna GB (1990) The melting behavior of organic materials confined in porous solids. J Chem Phys 93:9002

    Article  CAS  Google Scholar 

  41. Su Z, Zuo B (2011) Measure and research the surface free energy of silk fiber with ultra-low freeze vacuum drying. Silk 48(2):13–15

    CAS  Google Scholar 

  42. Asakura T, Yao J (2002) 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Sci 11(11):2706–2713

    Article  CAS  Google Scholar 

  43. Yao J, Ohgo K, Sugino R, Kishore R, Asakura T (2004) Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment using high-resolution solid-state 13C NMR spectroscopy. Biomacromolecules 5(5):1763–1769

    Article  CAS  Google Scholar 

  44. Asakura T, Nakazawa Y, Ohnishi E, Moro F (2005) Evidence from 13C solid-state NMR spectroscopy for a lamella structure in an alanine-glycine copolypeptide: a model for the crystalline domain of Bombyx mori silk fiber. Protein Sci 14(10):2654–2657

    Article  CAS  Google Scholar 

  45. Sato H, Kizuka M, Nakazawa Y, Asakura T (2008) The influence of Ser and Tyr residues on the structure of Bombyx mori silk fibroin studied using high-resolution solid-state 13C NMR spectroscopy and 13C selectively labeled model peptides. Polym J 40(3):184–185

    Article  CAS  Google Scholar 

  46. Nagano A, Kikuchi Y, Sato H, Nakazawa Y, Asakura T (2009) Structural characterization of silk-based water-soluble peptides (Glu)n(Ala-Gly-Ser-Gly-Ala-Gly)4 (n = 4 − 8) as a mimic of Bombyx mori silk fibroin by 13C solid-state NMR. Macromolecules 42(22):8950–8958

    Article  CAS  Google Scholar 

  47. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decai Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Gong, D., Liu, L. et al. Microstructure elucidation of historic silk (Bombyx mori) by nuclear magnetic resonance. Anal Bioanal Chem 406, 2709–2718 (2014). https://doi.org/10.1007/s00216-014-7660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7660-8

Keywords

Navigation