Skip to main content
Log in

Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this preliminary investigation, a low-grade astrocytoma (AcT) is investigated by high-resolution (HR) mass spectrometry (MS) aiming at characterization of gangliosides with potential biomarker value. The research was conducted towards a comparative mapping of ganglioside expression in AcT, its surrounding tissue (ST) and a normal control brain tissue (NT). HR MS was conducted in the negative ion mode nanoelectrospray ionization (nanoESI). Fragmentation analysis was carried out by collision-induced dissociation (CID) MS2–MS4. Due to the high resolving power and mass accuracy, by comparative mapping of the ganglioside extracts from AcT, ST and NT, under identical conditions, 37 different species in AcT, 40 in ST and 56 in NT were identified. AcT and ST were found to contain 18 identical ganglioside components. Among all three specimens, ST extract presented the highest levels of sialylation, fucosylation and acetylation, a feature which might be correlated to the tumor expansion in the adjacent brain area. MS mapping indicated also that AcT, ST and NT share one doubly deprotonated molecule at m/z 1063.31, attributable to GT1(d18:1/18:0) or GT1(d18:0/18:1). CID MS2–MS4 on these particular ions detected in AcT and ST provided data supporting GT1c isomer in the investigated astrocytoma tissue. Our results show that HR MS has a remarkable potential in brain cancer research for the determination of tumor-associated markers and for their structural determination.

Ganglioside isomer discrimination in human astrocytoma by Orbitrap multistage MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AcT:

Astrocytoma

CE:

Capillary electrophoresis

Cer:

Ceramide

CID:

Collision-induced dissociation

ESI:

Electrospray ionization

Fuc:

Fucose

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

HCT:

High-capacity ion trap

HPLC:

High-performance liquid chromatography

HPTLC:

High-performance thin layer chromatography

HR:

High resolution

LC:

Liquid chromatography

LCB:

Long chain base

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MSn :

Multistage mass spectrometry

NanoESI:

Nanoelectrospray ionization

Neu5Ac:

N-acetyl neuraminic acid

NT:

Normal brain tissue

QTOF:

Quadrupole time-of-flight

ST:

Surrounding tissue

TIC:

Total ion chromatogram

TLC:

Thin layer chromatography

WHO:

World Health Organization

References

  1. Svennerholm L, Fredman P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta 617:97–109

    Article  CAS  Google Scholar 

  2. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1998) Nomenclature of glycolipids. Eur J Biochem 257:293–298

    Article  Google Scholar 

  3. Greenberg MS (1997) Astrocytoma In: handbook of neurosurgery Vol 1 4th ed Lakeland, FL: Greenberg; 244–256

  4. Louis David N, Hiroko O, Wiestler D, Otmar CK, Webster BC, Peter JA, Scheithauer Bernd W, Paul K (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  CAS  Google Scholar 

  5. Wessels PH, Weber WE, Raven G, Ramaekers CS, Hopman HN, Twijnstra A (2003) Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol 2:395–403

    Article  Google Scholar 

  6. Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol 8:361–379

    Article  CAS  Google Scholar 

  7. Zhang H, Wu G, Tu H, Huang F (2007) Discovery of serum biomarkers in astrocytoma by SELDI-TOF MS and protein chip technology. J Neurooncol 84(3):315–323

    Article  CAS  Google Scholar 

  8. Birkléa S, Zengb G, Gaob L, Yub RK, Aubryc J (2003) Role of tumor-associated gangliosides in cancer progression. Biochimie 85:455–459

    Article  Google Scholar 

  9. Fernandez LE, Gabri MR, Guthmann MD, Gomez RE, Gold S, Fainboim L, Gomez DE, Alonso DF (2010) NGcGM3 Ganglioside: a privileged target for cancer vaccines. Clin Dev Immunol 2010:814397

    Article  Google Scholar 

  10. Köhler M, Machill S, Salzer R, Krafft C (2009) Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem 393:1513–1520

    Article  Google Scholar 

  11. Zhou Y, Liu CH, Sun Y, Pu Y, Boydston-White S, Liu Y, Alfano RR (2012) Human brain cancer studied by resonance Raman spectroscopy. J Biomed Opt 17:116021

    Article  Google Scholar 

  12. Birks SM, Danquah JO, King L, Vlasak R, Gorecki DC, Pilkington GJ (2011) Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol 13:950–960

    Article  CAS  Google Scholar 

  13. Ali K, Lu Y, Das U, Sharma RK, Wiebe S, Meguro K, Sadanand V, Fourney DR, Vitali A, Kelly M, May T, Gomez J, Pellerin E (2010) Biomolecular diagnosis of human glioblastoma multiforme using Synchrotron mid-infrared spectromicroscopy. Int J Mol Med 26:11–16

    Article  CAS  Google Scholar 

  14. Hwang J, Lee S, Lee JT, Kwon TK, Kim DR, Kim H, Park HC, Suk K (2010) Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol 159:586–603

    Article  CAS  Google Scholar 

  15. Abate LE, Mukherjee P, Seyfried TN (2006) Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J Neurochem 98:1973–1984

    Article  CAS  Google Scholar 

  16. Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is antiangiogenic in malignant brain cancer. J Oncol 2010:961243

    Article  Google Scholar 

  17. Vukelić Ž, Kalanj-Bognar S, Froesch M, Bîndila L, Radić B, Allen M, Peter-Katalinić J, Zamfir AD (2007) Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization. Glycobiology 17:504–515

    Article  Google Scholar 

  18. Schiopu C, Flangea C, Capitan F, Serb A, Vukelić Ž, Kalanj-Bognar S, Sisu E, Przybylski M, Zamfir AD (2009) Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Bioanal Chem 395:2465–2477

    Article  CAS  Google Scholar 

  19. Schiopu C, Vukelić Ž, Capitan F, Kalanj-Bognar S, Sisu E, Zamfir AD (2012) Chip-nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of meningioma gangliosides: a preliminary study. Electrophoresis 33:1778–1786

    Article  CAS  Google Scholar 

  20. Viljetić B, Labak I, Majić S, Stambuk A, Heffer M (2012) Distribution of mono-, di- and trisialo gangliosides in the brain of Actinopterygian fishes. Biochim Biophys Acta 1820:1437–1443

    Article  Google Scholar 

  21. Kasperzyk JL, El-Abbadi MM, Hauser EC, D’Azzo A, Platt FM, Seyfried TN (2004) N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 89:645–653

    Article  CAS  Google Scholar 

  22. Furukawa K, Aixinjueluo W, Kasama T, Ohkawa Y, Yoshihara M, Ohmi Y, Tajima O, Suzumura A, Kittaka D, Furukawa K (2008) Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 105:1057–1066

    Article  CAS  Google Scholar 

  23. Wagener R, Kobbe B, Stoffel W (1996) Quantification of gangliosides by microbore high-performance liquid chromatography. J Lipid Res 37:1823–1829

    CAS  Google Scholar 

  24. Whitehead SN, Chan KH, Gangaraju S, Slinn J, Li J, Hou ST (2011) Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One 6:e20808

    Article  CAS  Google Scholar 

  25. Almeida R, Mosoarca C, Chirita M, Udrescu V, Dinca N, Vukelić Ž, Allen M, Zamfir AD (2008) Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal Biochem 378:43–52

    Article  CAS  Google Scholar 

  26. Zamfir AD, Flangea C, Altmann F, Rizzi A (2011) Glycosylation analysis of proteins, proteoglycans and glycolipids using capillary electrophoresis and mass spectrometry. Adv Chromatogr 49:135–194

    Article  CAS  Google Scholar 

  27. Ikeda K, Taguchi R (2010) Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. Rapid Commun Mass Spectrom 24:2957–2965

    Article  CAS  Google Scholar 

  28. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 1184:474–503

    Article  CAS  Google Scholar 

  29. Haselberg R, De Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry for the analysis of intact proteins 2007–2010. Electrophoresis 32:66–82

    Article  CAS  Google Scholar 

  30. Zamfir A, Vukelić Ž, Peter-Katalinić J (2002) A capillary electrophoresis and off-line capillary electrophoresis/electrospray ionization-quadrupole time of flight-tandem mass spectrometry approach for ganglioside analysis. Electrophoresis 23:2894–2903

    Article  CAS  Google Scholar 

  31. Serb A, Schiopu C, Flagea C, Vukelić Ž, Sisu E, Zagrean L, Zamfir AD (2009) High-throughput analysis of gangliosides in defined regions of fetal brain by fully automated chip-based nanoelectrospray ionization multi-stage mass spectrometry. Eur J Mass Spectrom 15:541–553

    Article  CAS  Google Scholar 

  32. Mosoarca C, Ghiulai RM, Novaconi CR, Vukelić Ž, Chiriac A, Zamfir AD (2011) Application of chip-based nanoelectrospray ion trap mass spectrometry to compositional and structural analysis of gangliosides in human fetal cerebellum. Anal Lett 44:1036–1049

    Article  CAS  Google Scholar 

  33. Zamfir AD, Serb A, Vukelić Ž, Flangea C, Schiopu C, Marinčić D, Kalanj-Bognar S, Capitan F, Sisu E (2011) Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. J Am Soc Mass Spectrom 22:2145–2159

    Article  CAS  Google Scholar 

  34. Vakhrushev SY, Zamfir A, Peter-Katalinić J (2004) 0,2An cross-ring cleavage as a general diagnostic tool for glycan assignment in glycoconjugate mixtures. J Am Soc Mass Spectrom 15:1863–1868

    Article  CAS  Google Scholar 

  35. Fong B, Norris C, Lowe E, McJarrow P (2009) Liquid chromatography–high-resolution mass spectrometry for quantitative analysis of gangliosides. Lipids 44:867–874

    Article  CAS  Google Scholar 

  36. Svennerholm L, Fredman P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta 617:97–109

    Article  CAS  Google Scholar 

  37. Vukelić Ž, Metelmann W, Muthing J, Kos M, Peter-Katalinić J (2001) Anencephaly: structural characterization of gangliosides in defined brain regions. Biol Chem 382:259–274

    Google Scholar 

  38. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  39. Costello CE, Juhasz P, Perreault H (1994) New mass spectral approaches to ganglioside structure determinations. Progr Brain Res 101:45–61

    Article  CAS  Google Scholar 

  40. Zamfir A, Lion N, Vukelic Ž, Bindila L, Rossier JS, Girault HH, Peter-Katalinić J (2005) Thin chip microsprayer system coupled to quadrupole time-of-flight mass spectrometer for glycoconjugate analysis. Lab Chip 5:298–307

    Article  CAS  Google Scholar 

  41. Bartik P, Maglott A, Entlicher G, Vestweber D, Takeda K, Martin S, Dontenwill M (2008) Detection of a hypersialylated β1 integrin endogenously expressed in the human astrocytoma cell line A172. Int J Oncol 32:1021–1031

    CAS  Google Scholar 

  42. Zamfir A, Vukelić Ž, Bindila L, Peter-Katalinić J, Almeida R, Sterling A, Allen M (2004) Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum. J Am Soc Mass Spectrom 15:1649–1657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, projects PN-II-ID-PCE-2011-3-0047, PN-II-PCCA-2011-142, PN-II-RU-TE-2011-2-0008 and FP7 Marie Curie-PIRSES-GA-2010-269256.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alina D. Zamfir or Corina Flangea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamfir, A.D., Fabris, D., Capitan, F. et al. Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry. Anal Bioanal Chem 405, 7321–7335 (2013). https://doi.org/10.1007/s00216-013-7173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7173-x

Keywords

Navigation