Skip to main content
Log in

Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ∼250 Å and macropores of ∼ 1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ∼300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene–divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable separation. Finally, at the maximal working temperature of each column, the core-shell 3.6 μm column was far better than the other one, because it is the only one stable up to 90 °C. Lastly, the loading capacity was also measured on these four different phases. It appeared that the organic monolith was the less interesting and rapidly overloaded, due to the absence of mesopores. On the other hand, the loading capacity of prototype silica-based monolith was indeed reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guiochon G (2007) J Chromatog A 1168:101–168

    Article  CAS  Google Scholar 

  2. Cabrera K (2004) J Sep Sci 27:843–852

    Article  CAS  Google Scholar 

  3. Hjerten S, Liao JL, Zhang R (1989) J Chromatogr 473:273–275

    Article  CAS  Google Scholar 

  4. Svec F, Frechet JMJ (1992) Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  5. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  6. Eeltink S, Wouters B, Desmet G, Ursem M, Blinco D, Kemp GD, Treumann A (2011) J Chromatog A 1218:5504–5511

    Article  CAS  Google Scholar 

  7. Detobel F, Broeckhoven K, Wellens J, Wouters B, Swart R, Ursem M, Desmet G, Eeltink S (2010) J Chromatog A 1217:3085–3090

    Article  CAS  Google Scholar 

  8. Hormann K, Müllner T, Bruns S, Höltzel A, Tallarek U (2012) J Chromatog A 1222:46–58

    Article  CAS  Google Scholar 

  9. Knox JH (1977) J Chromatogr Sci 15:352–364

    CAS  Google Scholar 

  10. Poppe H (1997) J Chromatogr A 778:3–21

    Article  CAS  Google Scholar 

  11. Giddings JC (1965) Anal Chem 37:60–63

    Article  CAS  Google Scholar 

  12. MacNair JE, Lewis KC, Jorgenson JW (1997) Anal Chem 69:983–989

    Article  CAS  Google Scholar 

  13. Jerkovich AD, Mellors JS, Jorgenson JW (2003) LC-GC Europe 16:20–23

    CAS  Google Scholar 

  14. Mazzeo JR, Neue UD, Kele M, Plumb RS (2005) Anal Chem 77:460–467

    Article  Google Scholar 

  15. Guillarme D, Nguyen DTT, Rudaz S, Veuthey JL (2006) J Sep Sci 29:1836–1848

    Article  Google Scholar 

  16. Eugster PJ, Guillarme D, Rudaz S, Veuthey JL, Carrupt PA, Wolfender JL (2011) AOAC Int 94:51–70

    CAS  Google Scholar 

  17. Novakova L, Vlckova H (2009) Anal Chim Acta 656:8–35

    Article  CAS  Google Scholar 

  18. Staub A, Guillarme D, Schappler J, Veuthey JL, Rudaz S (2011) J Pharm Biomed Anal 55:810–822

    Article  CAS  Google Scholar 

  19. Fekete S, Berky R, Fekete J, Veuthey JL, Guillarme D (2012) J Chromatogr A 1236:177–188

    Article  CAS  Google Scholar 

  20. Krull IS, Rathore A (2011) LCGC North Am 29:838–852

    CAS  Google Scholar 

  21. Fekete S, Fekete J, Ganzler K (2009) J Pharm Biomed Anal 49:64–71

    Article  CAS  Google Scholar 

  22. Ruta J, Zurlino D, Grivel C, Heinisch S, Veuthey JL, Guillarme D (2012) J Chromatogr A 1228:221–231

    Article  CAS  Google Scholar 

  23. Guiochon G, Gritti F (2011) J Chromatogr A 1218:1915–1938

    Article  CAS  Google Scholar 

  24. Kirkland JJ (1992) Anal Chem 64:1239–1245

    Article  CAS  Google Scholar 

  25. Liekens A, Denayer J, Desmet G (2011) J Chromatogr A 1218:4406–4416

    Article  CAS  Google Scholar 

  26. Olah E, Fekete S, Fekete J, Ganzler K (2010) J Chromatogr A 1217:3642–3653

    Article  CAS  Google Scholar 

  27. Fanigliulo A, Cabooter D, Bellazzi G, Tramarin D, Allieri B, Rottigni A, Desmet G (2010) J Sep Sci 33:3655–3665

    Article  CAS  Google Scholar 

  28. Staub A, Zurlino D, Rudaz S, Veuthey JL, Guillarme D (2011) J Chromatogr A 1218:8903–8914

    Article  CAS  Google Scholar 

  29. Fekete S, Rudaz S, Fekete J, Guillarme D (2012) J Pharm Biomed Anal 70:158–168

    Article  CAS  Google Scholar 

  30. Fekete S, Rudaz S, Veuthey JL, Guillarme D (2012) J Sep Sci. doi:10.1002/jssc.201200297

  31. Snyder LR (1980) In: Horvath C (ed) Gradient elution in HPLC: advances and perspectives, vol. 1. Academic Press, New York

    Google Scholar 

  32. Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development, 2nd edn. John Wiley & Sons Inc., New York

    Book  Google Scholar 

  33. Giddings JC (1967) Anal Chem 39:1027–1028

    Article  CAS  Google Scholar 

  34. Horvath C, Lipsky SR (1967) Anal Chem 39:1893–1895

    Article  CAS  Google Scholar 

  35. Neue UD (2005) J Chromatogr A 1079:153–161

    Article  CAS  Google Scholar 

  36. Wang X, Stoll DR, Schellinger AP, Carr PW (2006) Anal Chem 78:3406–3416

    Article  CAS  Google Scholar 

  37. Dolan JW, Snyder LR, Djordjevic NM, Hill DW, Waeghe TJ (1999) J Chromatogr A 857:1–20

    Article  CAS  Google Scholar 

  38. Neue UD, Mazzeo JR (2001) J Sep Sci 24:921–929

    Article  CAS  Google Scholar 

  39. Neue UD, Carmody JL, Cheng YF, Lu Z, Phoebe CH, Wheat TE (2001) Adv Chromatogr 41:93–136

    CAS  Google Scholar 

  40. Neue UD, Cheng YF, Lu Z (2006) In: Kromidas S (ed) HPLC made to measure: a practical handbook for optimization. Wiley-VCH, Weinheim

    Google Scholar 

  41. Schuster SA, Boyes BE, Wagner BM, Kirkland JJ (2012) J Chromatogr A 1228:232–241

    Article  CAS  Google Scholar 

  42. Neue UD (2008) J Chromatogr A 1184:107–130

    Article  CAS  Google Scholar 

  43. Wang X, Stoll DR, Carr PW, Schoenmakers PJ (2006) J Chromatogr A 1125:177–181

    Article  CAS  Google Scholar 

  44. Zhang Y, Wang X, Mukherjee P, Petersson P (2009) J Chromatogr A 1216:4597–4605

    Article  CAS  Google Scholar 

  45. Causon TJ, Hilder EF, Shellie RA, Haddad PR (2010) J Chromatogr A 1217:5063–5068

    Article  CAS  Google Scholar 

  46. Ruta J, Guillarme D, Rudaz S, Veuthey JL (2010) J Sep Sci 33:2465–2477

    Article  CAS  Google Scholar 

  47. Broeckhoven K, Cabooter D, Lynen F, Sandra P, Desmet G (2010) J Chromatogr A 1217:2787–2795

    Article  CAS  Google Scholar 

  48. Broeckhoven K, Cabooter D, Eeltink S, Desmet G (2012) J Chromatogr A 1228:20–30

    Article  CAS  Google Scholar 

  49. Bristow PA, Knox JH (1977) Chromatographia 10:279–289

    Article  CAS  Google Scholar 

  50. Fekete S, Fekete J (2011) Talanta 84:416–423

    Article  CAS  Google Scholar 

  51. Wang X, Barber WE, Carr PW (2006) J Chromatogr A 1107:139–151

    Article  CAS  Google Scholar 

  52. McCalley DV (2006) Anal Chem 78:2532–2538

    Article  CAS  Google Scholar 

  53. Fekete S, Berky R, Fekete J, Veuthey JL, Guillarme D (2012) J Chromatogr A 1252:90–103

    Article  CAS  Google Scholar 

  54. Lundell N, Schreitmuller T (1999) Anal Biochem 266:31–47

    Article  CAS  Google Scholar 

  55. Williams KR, Stone KL (1995) Methods Mol Biol 40:157–175

    CAS  Google Scholar 

  56. Yan B, Valliere-Douglass J, Brady L, Steen S, Han M, Pace D, Elliott S, Yates Z, Balland A, Wang W, Pettit D (2007) J Chromatogr A 1164:153–161

    Article  CAS  Google Scholar 

  57. Kleemann G, Beierle J, Nichols A, Dillon T, Pipes G, Bondarenko P (2008) Anal Chem 80:2001–2009

    Article  CAS  Google Scholar 

  58. Dillon TM, Bondarenko PV, Rehder DS, Pipes GD, Kleemann GR, Ricci MS (2006) J Chromatogr A 1120:112–120

    Article  CAS  Google Scholar 

  59. Yang J, Wang S, Liu J, Raghani A (2007) J Chromatogr A 1156:174–182

    Article  CAS  Google Scholar 

  60. Yan B, Eris T, Yates Z, Hong RW, Steen S, Kleemann G, Wang W, Liu JL (2009) J Chromatogr B 877:1613–1620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Karin Cabrera (Merck KGaA) for providing the new wide-pore silica-based monolithic research samples (C18, 100 × 4.6 mm, KN2229, VNr. 4463.06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Fekete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, S., Veuthey, JL., Eeltink, S. et al. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Anal Bioanal Chem 405, 3137–3151 (2013). https://doi.org/10.1007/s00216-013-6759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6759-7

Keywords

Navigation