Skip to main content
Log in

A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(d-Cam)1/2(bdc)1/2(tmdpy) (d-Cam = d-camphoric acid; bdc = 1,4-benzenedicarboxylate; tmdpy = 4,4′-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(d-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m × 530 μm i.d.) and column B (2 m × 75 μm i.d.), were prepared by a dynamic coating method using Co-(d-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal–organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n = 6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dybtsev DN, Yutkin MP, Samsonenko DG et al (2010) Chem Eur J 16:10348–10356

    Article  CAS  Google Scholar 

  2. Yuan LM (2008) Sep Purif Technol 63:701–705

    Article  CAS  Google Scholar 

  3. Liu BY, Xuan WM, Cui Y (2010) Adv Mater 22:4112–4135

    Article  CAS  Google Scholar 

  4. Ali I, Gupta VK, Aboul-enein HY et al (2010) Chirality 19:453–463

    Article  Google Scholar 

  5. Schurig V (2001) J Chromatogr A 906:275–299

    Article  CAS  Google Scholar 

  6. Schurig V (2002) TRAC-Trend Anal Chem 21:647–661

    Article  CAS  Google Scholar 

  7. Li M, Huang JM, Li TY (2008) J Chromatogr A 1191:199–204

    Article  CAS  Google Scholar 

  8. Frank H, Nicholson GJ, Bayer E (1977) J Chromatogr Sci 15:174–176

    CAS  Google Scholar 

  9. Frank H, Rettenmeier A, Weicker H et al (1980) Clin Chem Act 105:201–211

    Article  CAS  Google Scholar 

  10. Schurig V, Betschinger F (1992) Chem Rev 92:873–888

    Article  CAS  Google Scholar 

  11. Armstrong DW, He LF, Liu YS (1999) Anal Chem 71:3873–3876

    Article  CAS  Google Scholar 

  12. Ding J, Welton T, Armstrong DW (2004) Anal Chem 76:6819–6822

    Article  CAS  Google Scholar 

  13. Yuan LM, Han Y, Zhou Y et al (2006) Anal Lett 39:1439–1449

    Article  CAS  Google Scholar 

  14. Zhao L, Ai P, Duan AH et al (2011) Anal Bioanal Chem 399:143–147

    Article  CAS  Google Scholar 

  15. Furukawa H, Michael MA, Yaghi OM (2007) J Mater Chem 17:3197–3204

    Article  CAS  Google Scholar 

  16. Gu ZY, Yan XP (2010) Angew Chem Int Ed 49:1477–1480

    Article  CAS  Google Scholar 

  17. Chang N, Gu ZY, Yan XP (2010) J Am Chem Soc 132:13645–13647

    Article  CAS  Google Scholar 

  18. Yang CX, Yan XP (2011) Anal Chem 83:7144–7150

    Article  CAS  Google Scholar 

  19. Yang CX, Chen YJ, Wang HF et al (2011) Chem Eur J 17:11734–11737

    Article  CAS  Google Scholar 

  20. Horike S, Dincă M, Tamaki K et al (2008) J Am Chem Soc 130:5854–5855

    Article  CAS  Google Scholar 

  21. Chen BL, Wang LB, Zapata F et al (2008) J Am Chem Soc 130:6718–6719

    Article  CAS  Google Scholar 

  22. Horcajada P, Serre C, Vallet-Regi M et al (2006) Angew Chem Int Ed Engl 45:5974–5978

    Article  CAS  Google Scholar 

  23. Song Y, Zhou T, Wang X et al (2006) Cryst Growth Des 6:14–17

    Article  CAS  Google Scholar 

  24. Vaidhyanathan R, Bradshaw D, Rebilly JN et al (2006) Angew Chem Int Ed 45:6495–6499

    Article  CAS  Google Scholar 

  25. Dybtsev DN, Nuzhdin AL, Chun H et al (2006) Angew Chem Int Ed 45:916–920

    Article  CAS  Google Scholar 

  26. Nuzhdin AL, Dybtsev DN, Bryliakov KP et al (2007) J Am Chem Soc 129:12958–12959

    Article  CAS  Google Scholar 

  27. Zhang J, Chen S, Valle H et al (2007) J Am Chem Soc 129:14168–14169

    Article  CAS  Google Scholar 

  28. Zhang J, Liu R, Feng P et al (2007) Angew Chem Int Ed 46:8388–8391

    Article  CAS  Google Scholar 

  29. Zhang J, Chen S, Wu T et al (2008) J Am Chem Soc 130:12882–12883

    Article  CAS  Google Scholar 

  30. Li G, Yu W, Ni J et al (2008) Angew Chem Int Ed 47:1245–1249

    Article  CAS  Google Scholar 

  31. Li G, Yu W, Cui Y (2008) J Am Chem Soc 130:4582–4583

    Article  CAS  Google Scholar 

  32. Bradshaw D, Prior TJ, Cussen EJ et al (2004) J Am Chem Soc 126:6106–6114

    Article  CAS  Google Scholar 

  33. Liu TF, Liu Y, Xuan WM et al (2010) Angew Chem Int Ed 49:4121–4124

    Article  CAS  Google Scholar 

  34. Bao XY, Broadbelt LJ, Snurr RQ (2010) Phys Chem Chem Phys 12:6466–6473

    Article  CAS  Google Scholar 

  35. Xuan WM, Zhang MN, Liu Y et al (2012) J Am Chem Soc 134:6904–6907

    Article  CAS  Google Scholar 

  36. Zhu CF, Yuan GZ, Chen X et al (2012) J Am Chem Soc 134:8058–8061

    Article  CAS  Google Scholar 

  37. Xie SM, Zhang ZJ, Wang ZY et al (2011) J Am Chem Soc 133:11892–11895

    Article  CAS  Google Scholar 

  38. Zhang J, Chen SM, Zingiryan A et al (2008) J Am Chem Soc 130:17246–17247

    Article  CAS  Google Scholar 

  39. Stephany O, Dron F, Tisse S et al (2009) J Chromatogr A 1216:4051–4062

    Article  CAS  Google Scholar 

  40. Ikai T, Okamoto Y (2009) Chem Rev 109:6077–6101

    Article  CAS  Google Scholar 

  41. Al-Majed AA (2009) J Pharmaceut Biomed 50:96–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (no. 21075109, no. 21127012) and the National Basic Research Program (no. 2011CB612312) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ming Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, SM., Zhang, XH., Zhang, ZJ. et al. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography. Anal Bioanal Chem 405, 3407–3412 (2013). https://doi.org/10.1007/s00216-013-6714-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6714-7

Keywords

Navigation