Skip to main content
Log in

UPLC-UV-MSE analysis for quantification and identification of major carotenoid and chlorophyll species in algae

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fast method for quantification and identification of carotenoid and chlorophyll species utilizing liquid chromatography coupled with UV detection and mass spectrometry has been demonstrated and validated for the analysis of algae samples. This method allows quantification of targeted pigments and identification of unexpected compounds, providing isomers separation, UV detection, accurate mass measurements, and study of fragment ions for structural elucidation in a single run. This is possible using parallel alternating low- and high-energy collision spectral acquisition modes, which provide accurate mass full scan chromatograms and accurate mass high-energy chromatograms. Here, it is shown how this approach can be used to confirm carotenoid and chlorophyll species by identification of key diagnostic fragmentations during high-energy mode. The developed method was successfully applied for the analysis of Dunaliella salina samples during defined red LED lighting growth conditions, identifying 37 pigments including 19 carotenoid species and 18 chlorophyll species, and providing quantification of 7 targeted compounds. Limit of detections for targeted pigments ranged from 0.01 ng/mL for lutein to 0.24 ng/mL for chlorophyll a. Inter-run precision ranged for of 3 to 24 (RSD%) while inter-run inaccuracy ranged from −17 to 11.

Identification of carotenoids and chlorophylls combining UPLC separation, UV detection, accurate mass measurements and study of fragment ions in a single run

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reinbothe S, Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237(2):323–343

    Article  CAS  Google Scholar 

  2. Telfer A (2002) What is beta-carotene doing in the photosystem II reaction centre? Philos Trans R Soc B-Biol Sci 357(1426):1431–1439. doi:10.1098/rstb.2002.1139, discussion 1439–1440, 1469–1470

    Article  CAS  Google Scholar 

  3. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817(1):182–193. doi:10.1016/j.bbabio.2011.04.012

    Article  CAS  Google Scholar 

  4. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9(6):1101–1118. doi:10.3390/md9061101

    Article  CAS  Google Scholar 

  5. Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 49(4):313–326. doi:10.1080/10408390802066979

    Article  CAS  Google Scholar 

  6. Darvin ME, Fluhr JW, Meinke MC, Zastrow L, Sterry W, Lademann J (2011) Topical beta-carotene protects against infra-red-light-induced free radicals. Exp Dermatol 20(2):125–129. doi:10.1111/j.1600-0625.2010.01191.x

    Article  CAS  Google Scholar 

  7. Kamffer Z, Bindon KA, Oberholster A (2010) Optimization of a method for the extraction and quantification of carotenoids and chlorophylls during ripening in grape berries (Vitis vinifera cv. Merlot). J Agric Food Chem 58(11):6578–6586. doi:10.1021/jf1004308

    Article  CAS  Google Scholar 

  8. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of beta-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86(4):1286–1291

    Article  CAS  Google Scholar 

  9. Palsson BO (2011) Adaptive laboratory evolution. Microbe 6(2):69–74

    Google Scholar 

  10. Bino RJ, Ric de Vos CH, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol 166(2):427–438. doi:10.1111/j.1469-8137.2005.01362.x

    Article  CAS  Google Scholar 

  11. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos RC (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58(15–16):4131–4146. doi:10.1093/jxb/erm271

    Article  CAS  Google Scholar 

  12. Pott I, Marx M, Neidhart S, Muhlbauer W, Carle R (2003) Quantitative determination of beta-carotene stereoisomers in fresh, dried, and solar-dried mangoes (Mangifera indica L.). J Agric Food Chem 51(16):4527–4531. doi:10.1021/jf034084h

    Article  CAS  Google Scholar 

  13. Ranga Rao A, Raghunath Reddy RL, Baskaran V, Sarada R, Ravishankar GA (2010) Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem 58(15):8553–8559. doi:10.1021/jf101187k

    Article  CAS  Google Scholar 

  14. Ranga R, Sarada AR, Baskaran V, Ravishankar GA (2009) Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and their antioxidant properties. J Microbiol Biotechnol 19(11):1333–1341

    CAS  Google Scholar 

  15. Ornelas-Paz Jde J, Yahia EM, Gardea-Bejar A (2007) Identification and quantification of xanthophyll esters, carotenes, and tocopherols in the fruit of seven Mexican mango cultivars by liquid chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry [LC-(APcI(+))-MS]. J Agric Food Chem 55(16):6628–6635. doi:10.1021/jf0706981

    Article  Google Scholar 

  16. Aparicio-Ruiz R, Riedl KM, Schwartz SJ (2011) Identification and quantification of metallo-chlorophyll complexes in bright green table olives by high-performance liquid chromatrography-mass spectrometry quadrupole/time-of-flight. J Agric Food Chem 59(20):11100–11108. doi:10.1021/jf201643s

    Article  CAS  Google Scholar 

  17. Gentili A, Caretti F (2011) Evaluation of a method based on liquid chromatography-diode array detector-tandem mass spectrometry for a rapid and comprehensive characterization of the fat-soluble vitamin and carotenoid profile of selected plant foods. J Chromatogr A 1218(5):684–697. doi:10.1016/j.chroma.2010.12.001

    Article  CAS  Google Scholar 

  18. Garcia-de Blas E, Mateo R, Vinuela J, Alonso-Alvarez C (2011) Identification of carotenoid pigments and their fatty acid esters in an avian integument combining HPLC-DAD and LC-MS analyses. J Chromatogr B Anal Technol Biomed Life Sci 879(5–6):341–348. doi:10.1016/j.jchromb.2010.12.019

    Article  CAS  Google Scholar 

  19. Gauthier-Jaques A, Bortlik K, Hau J, Fay LB (2001) Improved method to track chlorophyll degradation. J Agric Food Chem 49(3):1117–1122

    Article  CAS  Google Scholar 

  20. Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun Mass Spectrom 21(9):1485–1496. doi:10.1002/rcm.2996

    Article  CAS  Google Scholar 

  21. Castro-Perez JM, Kamphorst J, DeGroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ, Hankemeier T (2010) Comprehensive LC-MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9(5):2377–2389. doi:10.1021/pr901094j

    Article  CAS  Google Scholar 

  22. Rainville PD, Stumpf CL, Shockcor JP, Plumb RS, Nicholson JK (2007) Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics. J Proteome Res 6(2):552–558. doi:10.1021/pr060611b

    Article  CAS  Google Scholar 

  23. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MS(E): a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20(13):1989–1994. doi:10.1002/rcm.2550

    Article  CAS  Google Scholar 

  24. Garcia-Gonzalez M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115(1):81–90. doi:10.1016/j.jbiotec.2004.07.010

    Article  CAS  Google Scholar 

  25. Dong L, Shion H, Davis RG, Terry-Penak B, Castro-Perez J, van Breemen RB (2010) Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal Chem. doi:10.1021/ac101974g

  26. Chauveau-Duriot B, Doreau M, Noziere P, Graulet B (2010) Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method. Anal Bioanal Chem 397(2):777–790. doi:10.1007/s00216-010-3594-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Icelandic Technology Development Fund supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Paglia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.49 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, W., Magnúsdóttir, M., Brynjólfson, S. et al. UPLC-UV-MSE analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Anal Bioanal Chem 404, 3145–3154 (2012). https://doi.org/10.1007/s00216-012-6434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6434-4

Keywords

Navigation