Skip to main content
Log in

Emission (57Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The emission (57Co) variant of Mössbauer spectroscopy, rarely used in biology-related studies, was applied to study binding and possible transformations of 57CoII traces in live and dead (hydrothermally treated) cells of the rhizobacterium Azospirillum brasilense (strain Sp7) at T = 80 K in frozen aqueous suspensions and as their dried residues. The Mössbauer parameters calculated from the spectra were compared with the similarly obtained data reported earlier for another A. brasilense strain, Sp245 (which differs from strain Sp7 by the ecological niche occupied in the rhizosphere and was found earlier to exhibit different metabolic responses under similar environmental conditions). Similarly to strain Sp245, live cells of strain Sp7, rapidly frozen 2 min and 1 h after their contact with 57Co2+ (measured in frozen suspensions), showed marked differences in their Mössbauer parameters, reflecting metabolic transformations of 57Co2+ occurring within an hour. However, the parameters for strains Sp7 (this work) and Sp245 (reported earlier), obtained under similar conditions, were found to significantly differ, implying dissimilarity in their metabolic response to Co2+. This is in line with their different metabolic responses to several heavy metals, including Co2+, detected earlier using Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DRIFT:

Diffuse reflectance infrared Fourier transform (spectroscopy)

EMS:

Emission Mössbauer spectroscopy

FTIR:

Fourier transform infrared (spectroscopy)

MS:

Mössbauer spectroscopy

PHB:

Poly-3-hydroxybutyrate

References

  1. Maret W (2010) Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2:117–125

    Article  CAS  Google Scholar 

  2. Kamnev AA (2005) Application of emission (57Co) Mössbauer spectroscopy in bioscience. J Mol Struct 744–747:161–167

    Article  Google Scholar 

  3. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YD, Polissiou MG, Gardiner PHE (2006) Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta 573–574:445–452

    Article  Google Scholar 

  4. Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007) Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J Biol Chem 282:30442–30451

    Article  CAS  Google Scholar 

  5. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  6. Leggett RW (2008) The biokinetics of inorganic cobalt in the human body. Sci Total Environ 389:259–269

    Article  CAS  Google Scholar 

  7. Nagy DL (1994) Trends in Mössbauer emission spectroscopy of 57Co/57Fe. Hyperfine Interact 83(1):9–13

    Article  Google Scholar 

  8. Nath A (2010) The role of emission Mössbauer spectroscopy in the study of sophisticated materials. J Nucl Radiochem Sci 11:A1–A3

    CAS  Google Scholar 

  9. Kamnev AA, Antonyuk LP, Smirnova VE, Serebrennikova OB, Kulikov LA, Perfiliev YD (2002) Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy. Anal Bioanal Chem 372(3):431–435

    Article  CAS  Google Scholar 

  10. Kamnev AA, Antonyuk LP, Smirnova VE, Kulikov LA, Perfiliev YD, Kudelina IA, Kuzmann E, Vértes A (2004) Structural characterization of glutamine synthetase from Azospirillum brasilense. Biopolymers 74:64–68

    Article  CAS  Google Scholar 

  11. Ambe S, Ambe F, Nozaki T (1985) Tracer and Mössbauer studies of iron and cobalt in water hyacinth roots. Int J Appl Radiat Isot 36(1):7–11

    Article  CAS  Google Scholar 

  12. Ambe S (1990) Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga). Hyperfine Interact 58(1–4):2329–2335

    Article  CAS  Google Scholar 

  13. Giberman E, Yariv Y, Kalb AJ, Bauminger ER, Cohen SG, Froindlich D, Ofer S (1974) Recoil-free spectra from 57Co-enterochelin in E. coli cells. J Phys Colloq 35(Suppl 12):C6-371–C6-374

    Article  Google Scholar 

  14. Kamnev AA, Antonyuk LP, Kulikov LA, Perfiliev YD (2004) Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. BioMetals 17(4):457–466

    Article  CAS  Google Scholar 

  15. Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  16. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  Google Scholar 

  17. Pogorelova AY, Mulyukin AL, Antonyuk LP, Galchenko VF, El’-Registan GI (2009) Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants. Microbiology (Moscow) 78:559–568

    Article  CAS  Google Scholar 

  18. Mulyukin AL, Suzina NE, Pogorelova AY, Antonyuk LP, Duda VI, El-Registan GI (2009) Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense. Microbiology (Moscow) 78:33–41

    Article  CAS  Google Scholar 

  19. Kamnev AA, Tugarova AV, Tarantilis PA, Gardiner PHE, Polissiou MG (2012) Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: the effects of copper(II). Appl Soil Ecol. doi:10.1016/j.apsoil.2011.10.020

  20. Kamnev AA, Tugarova AV, Biró B, Kovács K, Homonnay Z, Kuzmann E, Vértes A (2012) Co2+ interaction with Azospirillum brasilense Sp7 cells: a 57Co emission Mössbauer spectroscopic study. Hypefine Interact 206(1–3):91–94. doi:10.1007/s10751-012-0572-0

    Article  CAS  Google Scholar 

  21. Kamnev AA, Sadovnikova JN, Tarantilis PA, Polissiou MG, Antonyuk LP (2008) Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb Ecol 56:615–624

    Article  CAS  Google Scholar 

  22. Tugarova AV, Kamnev AA, Antonyuk LP, Gardiner PHE (2006) Azospirillum brasilense resistance to some heavy metals. In: Alpoim MC, Morais PV, Santos MA, Cristóvão AJ, Centeno JA, Collery P (eds) Metal ions in biology and medicine, vol 9. John Libbey Eurotext, Paris, pp 242–245

    Google Scholar 

  23. Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  24. Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131

    Google Scholar 

  25. Kamnev AA, Tugarova AV, Selivanova MA, Tarantilis PA, Polissiou MG, Kudryasheva NS (2012) Effects of americium-241 and humic substances on Photobacterium phosphoreum: bioluminescence and diffuse reflectance FTIR spectroscopic studies. Spectrochim Acta A Mol Biomol Spectrosc. doi:10.1016/j.saa.2012.06.003

  26. Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB (2004) Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  CAS  Google Scholar 

  27. Caubet A, Moreno V, Labarta A, Tejada X (1990) Spectroscopic and thermogravimetric studies of Co(II)-nucleotides complexes. J Inorg Biochem 39:173–186

    Article  CAS  Google Scholar 

  28. Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    Article  CAS  Google Scholar 

  29. Kamnev AA, Kulikov LA, Perfiliev YD, Antonyuk LP, Kuzmann E, Vértes A (2005) Application of 57Co emission Mössbauer spectroscopy to studying biocomplexes in frozen solutions. Hyperfine Interact 165(1–4):303–308

    Google Scholar 

  30. Namuswe F, Goldberg DP (2006) A combinatorial approach to minimal peptide models of a metalloprotein active site. Chem Commun 22:2326–2328

    Article  Google Scholar 

  31. Adamczyk M, Poznański J, Kopera E, Bal W (2007) A zinc-finger like metal binding site in the nucleosome. FEBS Lett 581(7):1409–1416

    Article  CAS  Google Scholar 

  32. Yoon S, Lippard SJ (2005) Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. J Am Chem Soc 127:8386–8397

    Article  CAS  Google Scholar 

  33. Seemann M, Janthawornpong K, Schweizer J, Böttger LH, Janoschka A, Ahrens-Botzong A, Ngouamegne Tambou E, Rotthaus O, Trautwein AX, Rohmer M, Schünemann V (2009) J Am Chem Soc 131:13184–13185

    Article  CAS  Google Scholar 

  34. Kamnev AA, Tugarova AV, Kovacs K, Homonnay Z, Kuzmann E, Vértes A (2012) Aspartic acid interaction with cobalt(II) in dilute aqueous solution: a 57Co emission Mössbauer spectroscopic study. Hyperfine Interact 206(1–3):101–104. doi:10.1007/s10751-011-0428-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A.K. is grateful to Professor Yu.D. Perfiliev and Dr. L.A. Kulikov (Moscow, Russia) for many stimulating discussions related to the theory and methodology of the emission variant of Mössbauer spectroscopy. This work was supported by grants from NATO (Project ESP.NR.NRCLG 982857), Hungarian Science Fund (OTKA Projects K68135, 100424, K71215, NN84307), as well as under the Agreements on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2008–2010 (Projects 45 and 46) and for 2011–2013 (Projects 28 and 29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kamnev.

Additional information

Published in the topical collection Metallomics with guest editors Uwe Karst and Michael Sperling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamnev, A.A., Tugarova, A.V., Kovács, K. et al. Emission (57Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells. Anal Bioanal Chem 405, 1921–1927 (2013). https://doi.org/10.1007/s00216-012-6370-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6370-3

Keywords

Navigation