Skip to main content
Log in

Simultaneous diastereo- and enantioseparation of farnesoid X receptor (FXR) agonists with a quinine carbamate-based chiral stationary phase

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the frame of a project aimed at finding non-steroidal farnesoid X receptor (FXR) agonists, we identified 4-(2,4-dimethoxyphenyl)-3,6-dimethyl-1-(2-tolyl)-4,8-dihydro-1H-pyrazole[3,4-e][1,4]thiazepin-7-one (1) as a hit endowed with FXR activity. Most of the compounds synthesised during the hit-to-lead optimisation work were characterised by the presence of two chiral centres and were therefore obtained as mixtures of anti(±)- and syn(±)-diastereoisomers. A restricted sub-set of species harboured with a carboxylic acid group on the distal phenyl ring of the biphenyl (a(±)5 (A1) and s(±)5 (S1)) or the phenoxyphenyl (a(±)6 (A2) and s(±)6 (S2)) moiety at C-4 position of the pyrazole[3,4-e][1,4]thiazepin-7-one core, resulted in suitable diastereo- and enantioresolution with a quinine (QN) carbamate-derived chiral stationary phase (CSP). Differently from the compounds usually analysed with QN-based CSPs, the couples A1/S1 and A2/S2 were atypical selectands, in which the two chiral carbon atoms reside at a remote position with respect to the carboxylic function, the main “point of attack” to the CSP. We produced evidence that the scarcely employed normal-phase (NP) eluent systems represent the elective choice for achieving the simultaneous diastereo- and enantioseparation of this class of compounds over the usually preferred reversed-phase (RP) and polar-organic (PO) modes of elution. Indeed, after the optimisation of the eluent composition, NP conditions allowed to obtain profitable enantioselectivity profiles, along with excellent diastereoselectivity levels (α(A1) = 1.07, R S(A1) = 1.15; α(S1) = 1.09, R S(S1) = 1.47; α(A2) = 1.08, R S(A2) = 1.31; and α(S2) = 1.06, R S(S2) = 1.18). The optimised NP methods are suitable for simultaneously providing information on the diastereo- and enantiopurity of the investigated compounds.

Simultaneous diastereoand enantioseparation of two non-steroidal FXR agonists with a quinine carbamate-based chiral stationary phase, in the normal-phase mode of elution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AA:

Ammonium acetate

ACN:

Acetonitrile

AcOH:

Acetic acid

BA:

Bile acid

BzA:

Benzoic acid

CDCA:

Chenodeoxycholic acid

CEA:

Cyclohexylamine

CECA:

Cyclohexanecarboxylic acid

DEA:

Diethylamine

DEAA:

Diethylammonium acetate

DIPEA:

N,N-diisopropylethylamine

ETN:

Ethanolamine

EtOH:

Ethanol

FA:

Formic acid

FXR:

Farnesoid X receptor

IPA:

2-propanol

MeOH:

Methanol

NP:

Normal phase

PO:

Polar organic

QN:

Quinine

RP:

Reversed phase

TEA:

Triethylamine

TEAA:

Triethylammonium acetate

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

References

  1. Wang W, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3:543–553

    Article  CAS  Google Scholar 

  2. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368

    Article  CAS  Google Scholar 

  3. Makashima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  Google Scholar 

  4. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzales FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744

    Article  CAS  Google Scholar 

  5. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515

    Article  CAS  Google Scholar 

  6. Gadaleda R, van Mil SWC, Oldenburg B, Siersema PD, Klomp LWJ, van Erpecum KJ (2010) Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta 1801:683–692

    Article  Google Scholar 

  7. Wang YD, Chen WD, Huang W (2008) FXR, a target for different diseases. Histol Histopathol 23:621–627

    CAS  Google Scholar 

  8. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM (2002) 6a-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45:3569–3572

    Article  CAS  Google Scholar 

  9. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, Creech KL, Moore LB, Wilson JG, Lewis MC, Jones SA, Willson TM (2000) Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 43:2971–2974

    Article  CAS  Google Scholar 

  10. Akwabi-Ameyaw A, Bass JY, Caldwell RD, Caravella JA, Chen L, Creech KL, Deaton DN, Jones SA, Kaldor I, Liu Y, Madauss KP, Marr HB, McFayden RB, Miller AB, Navas F III, Parks DJ, Spearing PK, Todd D, Williams SP, Wisely GB (2008) Conformationally constrained farnesoid X receptor (FXR) agonists naphthoic acid-based analogs of GW 4064. Bioorg Med Chem Lett 18:4339–4343

    Article  CAS  Google Scholar 

  11. Akwabi-Ameyaw A, Bass JY, Caldwell RD, Caravella JA, Chen L, Creech KL, Deaton DN, Madauss KP, Marr HB, McFayden RB, Miller AB, Navas F III, Parks DJ, Spearing PK, Todd D, Williams SP, Wisely GB (2009) FXR agonist activity of conformationally constrained analogs of GW 4064. Bioorg Med Chem Lett 19:4733–4739

    Article  CAS  Google Scholar 

  12. Bass JY, Caldwell RD, Caravella JA, Chen L, Creech KL, Deaton DN, Madauss KP, Marr HB, McFayden RB, Miller AB, Parks DJ, Todd D, Williams SP, Wisely GB (2009) Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW 4064. Bioorg Med Chem Lett 19:2969–2973

    Article  CAS  Google Scholar 

  13. Bass JY, Caravella JA, Chen L, Creech KL, Deaton DN, Madauss KP, Marr HB, McFayden RB, Miller AB, Mills WY, Navas F III, Parks DJ, Smalley TL Jr, Spearing PK, Todd D, Williams SP, Wisely GB (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg Med Chem Lett 21:1206–1213

    Article  CAS  Google Scholar 

  14. Akwabi-Ameyaw A, Caravella JA, Chen L, Creech KL, Deaton DN, Madauss KP, Marr HB, Miller AB, Navas F III, Parks DJ, Spearing PK, Todd D, Williams SP, Wisely GB (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene. Bioorg Med Chem Lett 21:6154–6160

    Article  CAS  Google Scholar 

  15. Flatt B, Martin R, Wang TL, Mahaney P, Murphy B, Gu XH, Foster P, Li J, Pircher P, Petrowski M, Schulman I, Westin S, Wrobel J, Yan G, Bischoff E, Daige C, Mohan R (2009) Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 52:904–907

    Article  CAS  Google Scholar 

  16. Feng S, Yang M, Zhang Z, Wang Z, Hong D, Richter H, Benson GM, Bleicher K, Grether U, Martin RE, Plancher JM, Kuhn B, Rudolph MG, Chen L (2009) Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist. Bioorg Med Chem Lett 19:2595–2598

    Article  CAS  Google Scholar 

  17. Richter HGF, Benson GM, Bleicher KH, Blum D, Chaput E, Clemann N, Feng S, Gardes C, Grether U, Hartman P, Kuhn B, Martin RE, Plancher JM, Rudolph MG, Schuler F, Taylor S (2011) Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties. Bioorg Med Chem Lett 21:1134–1140

    Article  CAS  Google Scholar 

  18. Richter HGF, Benson GM, Blum D, Chaput E, Feng S, Gardes C, Grether U, Hartman P, Kuhn B, Martin RE, Plancher JM, Rudolph MG, Schuler F, Taylor S, Bleicher KH (2011) Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes. Bioorg Med Chem Lett 21:191–194

    Article  CAS  Google Scholar 

  19. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, Rosenfeld JM, Alvarez JGA, Noel JP, Nicolaou KC, Evans RMA (2003) Chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11:1079–1092

    Article  CAS  Google Scholar 

  20. Abel U, Schlueter T, Schulz A, Hambruch E, Steeneck C, Hornberger M, Hoffmann T, Perovic-Ottstadt S, Kinzel O, Burnet M, Deuschle U, Kremoser C (2010) Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists. Bioorg Med Chem Lett 20:4911–4917

    Article  CAS  Google Scholar 

  21. Schuster D, Markt P, Grienke U, Mihaly-Bison J, Binder M, Noha SM, Rollinger JM, Stuppner H, Bochkov VN, Wolbera G (2011) Pharmacophore-based discovery of FXR agonists. Part I: model development and experimental validation. Bioorg Med Chem 19:7168–7180

    Article  CAS  Google Scholar 

  22. Marinozzi M, Carotti A, Sansone E, Macchiarulo A, Rosatelli E, Sardella R, Natalini B, Rizzo G, Adorini L, Passeri D, De Franco F, Pruzanski M, Pellicciari R (2012) Pyrazole[3,4-e][1,4]thiazepin-7-one derivatives as a novel class of farnesoid X receptor (FXR) agonists. Bioorg Med Chem 20:3429–3445

    Article  CAS  Google Scholar 

  23. Maier NM, Lindner W (2006) In: Francotte E, Lindner W (eds) Chirality in drug research. WILEY, Weinheim

    Google Scholar 

  24. Lämmerhofer M, Lindner W (2008) In: Grushka E, Grinberg N (eds) Advances in chromatography, vol 46. CRC Press, Boca Raton

    Google Scholar 

  25. Natalini B, Sardella R (2012) In: Tranter G (ed) Comprehensive chirality. Elsevier, Amsterdam

    Google Scholar 

  26. Sardella R, Lämmerhofer M, Natalini B, Lindner W (2008) In-line coupling of reversed-phase and quinine carbamate-based anion-exchange type chiral stationary phase to cope with limited chemoselectivity on the latter: a case study illustrated for simultaneous T3 and T4 enantiomer separation. J Sep Sci 31:1702–1711

    Article  CAS  Google Scholar 

  27. Lämmerhofer M, Gyllenhaal O, Lindner W (2004) HPLC enantiomer separation of a chiral 1,4-dihydropyridine monocarboxylic acid. J Pharm Biomed Anal 35:259–266

    Article  Google Scholar 

  28. ACD/Labs Software version 7.0

  29. Gika H, Lämmerhofer M, Papadoyannis I, Lindner W (2004) Direct separation and quantitative analysis of thyroxine and triiodothyronine enantiomers in pharmaceuticals by high-performance liquid chromatography. J Chromatogr B 800:193–201

    Article  CAS  Google Scholar 

  30. Péter A (2002) Direct high-performance liquid chromatographic enantioseparation of apolar β-amino acids on a quinine-derived chiral anionexchanger stationary phase. J Chromatogr A 955:141–150

    Article  Google Scholar 

  31. Lämmerhofer M, Imming P, Lindner W (2004) Direct high-performance liquid chromatographic enantiomer separation of anti-inflammatory planar chiral [2.2]paracyclophane-4-acetic acid. Chromatographia 60:S13–S17

    Article  Google Scholar 

  32. Sardella R, Lämmerhofer M, Natalini B, Lindner W (2006) Enantioselective HPLC of potentially CNS-active acidic amino acids with a cinchona carbamate based chiral stationary phase. Chirality 20:571–576

    Article  Google Scholar 

  33. Bicker W, Lämmerhofer M, Lindner W (2004) Direct high-performance liquid chromatographic method for enantioselective and diastereoselective determination of selected pyrethroic acids. J Chromatogr A 1035:37–46

    Article  CAS  Google Scholar 

  34. Yang M, Fazio S, Munch D, Drumm P (2005) Impact of methanol and acetonitrile on separations based on π–π interactions with a reversed-phase phenyl column. J Chromatogr A 1097:124–129

    Article  CAS  Google Scholar 

  35. Xiong X, Baeyens WRG, Aboul-Enein HY, Delanghe JR, Tu T, Ouyang J (2007) Impact of amines as co-modifiers on the enantioseparation of various amino acid derivatives on a tert-butyl carbamoylated quinine-based chiral stationary phase. Talanta 71:573–581

    Article  CAS  Google Scholar 

  36. Gyimesi-Forras K, Akasaka K, Lämmerhofer M, Maier NM, Fujita T, Watanabe M, Harada N, Lindner W (2005) Enantiomer separation of a powerful chiral auxiliary, 2-methoxy-2-(1-naphthyl)propionic acid by liquid chromatography using chiral anion exchanger-type stationary phases in polar-organic mode; investigation of molecular recognition aspects. Chirality 17:S134–S142

    Article  CAS  Google Scholar 

  37. Lubda D, Lindner W (2004) Monolithic silica columns with chemically bonded tert-butylcarbamoylquinine chiral anion-exchanger selector as a stationary phase for enantiomer separations. J Chromatogr A 1036:135–143

    Article  CAS  Google Scholar 

  38. Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216:1157–1166

    Article  CAS  Google Scholar 

  39. Gyimesi-Forrás K, Maier NM, Kökösi J, Gergely A, Lindner W (2009) Enantiomer separation of imidazo-quinazoline-dione derivatives on quinine carbamate-based chiral stationary phase in normal phase mode. Chirality 21:199–207

    Article  Google Scholar 

  40. Soczewiński E (1977) Solvent composition effects in liquid–solid systems. J Chromatogr 130:23–28

    Article  Google Scholar 

  41. Booth TD, Wainer IW (1996) Investigation of the enantioselective separations of α-alkylarylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase using quantitative structure-enantioselective retention relationships Identification of a conformationally driven chiral recognition mechanism. J Chromatogr A 737:157–169

    Article  CAS  Google Scholar 

  42. Krawinkler KH, Maier NM, Sajovic E, Lindner W (2004) Novel urea-linked cinchona-calixarene hybrid-type receptors for efficient chromatographic enantiomer separation of carbamate-protected cyclic amino acids. J Chromatogr A 1053:119–131

    CAS  Google Scholar 

  43. Gasco-López AI, Santos-Montes A, Izquierdo-Hornillos R (1997) The effect of different amines added to eluents as silanol masking agents on the chromatographic behavior of some diuretics in reversed-phase high-performance liquid chromatography using C18 packings. J Chromatogr Sci 35:525–535

    Google Scholar 

Download references

Acknowledgements

This work was supported by Intercept Pharmaceuticals (New York). We thank Professor Wolfgang Lindner (University of Vienna) for the generous gift of the column.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Natalini.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardella, R., Marinozzi, M., Ianni, F. et al. Simultaneous diastereo- and enantioseparation of farnesoid X receptor (FXR) agonists with a quinine carbamate-based chiral stationary phase. Anal Bioanal Chem 405, 847–862 (2013). https://doi.org/10.1007/s00216-012-6348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6348-1

Keywords

Navigation