Skip to main content

Advertisement

Log in

Spectroscopic detection and quantification of heme and heme degradation products

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Heme and heme degradation products play critical roles in numerous biological phenomena which until now have only been partially understood. One reason for this is the very low concentrations at which free heme, its complexes and the partly unstable degradation products occur in living cells. Therefore, powerful and specific detection methods are needed. In this contribution, the potential of nondestructive Raman spectroscopy for the detection, quantification and discrimination of heme and heme degradation products is investigated. Resonance Raman spectroscopy using different excitation wavelengths (413, 476, 532, and 752 nm) is employed to estimate the limit of detection for hemin, myoglobin, biliverdin, and bilirubin. Concentrations in the low micromolar range (down to 3 μmol/L) could be reliably detected when utilizing the resonance enhancement effect. Furthermore, a systematic study on the surface-enhanced Raman spectroscopy (SERS) detection of hemin in the presence of other cellular components, such as the highly similar cytochrome c, DNA, and the important antioxidant glutathione, is presented. A microfluidic device was used to reproducibly create a segmented flow of aqueous droplets and oil compartments. Those aqueous droplets acted as model chambers where the analytes have to compete for the colloid. With the help of statistical analysis, it was possible to detect and differentiate the pure substances as well as the binary mixtures and gain insights into their interaction.

Resonance Raman spectrum of met-myoglobin and Raman intensity - concentration - calibration plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Furuyama K, Kaneko K, Vargas PD (2007) Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213(1):1–16

    Article  CAS  Google Scholar 

  2. Ryter SW, Tyrrell RM (2000) The Heme synthesis and degradation pathways: role in oxidant sensitivity—heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28(2):289–309. doi:10.1016/s0891-5849(99)00223-3

    Article  CAS  Google Scholar 

  3. Hou S, Reynolds MF, Horrigan F, Heinemann SH, Hoshi T (2006) Reversible binding of heme to proteins in cellular signal transduction. Accounts Chem Res 39:918–924

    Article  CAS  Google Scholar 

  4. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157(3):175–188

    Article  CAS  Google Scholar 

  5. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37(5):955–964. doi:10.1039/b708841h

    Article  CAS  Google Scholar 

  6. Efremov EV, Ariese F, Gooijer C (2008) Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 606(2):119–134. doi:10.1016/j.aca.2007.11.006

    Article  CAS  Google Scholar 

  7. Pahlow S, März A, Seise B, Hartmann K, Freitag I, Kämmer E, Böhme R, Deckert V, Weber K, Cialla D, Popp J (2012) Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng Life Sci 12:131–143

    Article  CAS  Google Scholar 

  8. Hering K, Cialla D, Ackermann K, Doerfer T, Moeller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124

    Article  CAS  Google Scholar 

  9. Kho KW, Fu CY, Dinish US, Olivo M (2011) Clinical SERS: are we there yet? J Biophotonics 4:667–684

    Article  Google Scholar 

  10. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  11. Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060. doi:10.1039/b708459p

    Article  CAS  Google Scholar 

  12. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. Chem Phys Chem 8:2665–2670

    Article  CAS  Google Scholar 

  13. Strehle KR, Cialla D, Rösch P, Henkel T, Köhler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547

    Article  CAS  Google Scholar 

  14. März A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach—online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J Biophotonics 2:232–242

    Article  Google Scholar 

  15. Henkel T, Bermig T, Kielpinski M, Grodrian A, Metze J, Kohler JM (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101(1–3):439–445. doi:10.1016/j.cej.2004.01.021

    Article  CAS  Google Scholar 

  16. März A, Bocklitz T, Popp J (2011) Online-calibration for reliable and robust lab-on-a-chip surface enhanced Raman spectroscopy measurement in a liquid/liquid segmented flow. Anal Chem 83(21):8337–8340. doi:10.1021/ac2015799

    Article  Google Scholar 

  17. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  18. R Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  19. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geosience aplications. Nucl Instrum Meth Phys Res B34(34):396–402

    CAS  Google Scholar 

  20. Brown SB, Dean TC, Jones P (1970) Aggregation of ferrihaems. Dimerization and protolytic equilibria of protoferrihaem and deuteroferrihaem in aqueous solution. Biochem J 117:733–739

    CAS  Google Scholar 

  21. Kuzelova K, Mrhalova M, Hrkal Z (1997) Kinetics of heme interaction with heme-binding proteins: the effect of heme aggregation state. Biochimica Et Biophysica Acta-Gen Subj 1336:497–501

    Article  CAS  Google Scholar 

  22. Wood BR, Langford SJ, Cooke BM, Lim J, Glenister FK, Duriska M, Unthank JK, McNaughton D (2004) Resonance Raman spectroscopy reveals new insight into the electronic structure of beta-hematin and malaria pigment. J Am Chem Soc 126(30):9233–9239. doi:10.1021/ja038691x

    Article  CAS  Google Scholar 

  23. Wu CH, Xu BH, Zhao JA, Jiang QB, Wei FD, Jiang H, Wang XM, Yan H (2010) Ferrocene-substituted dithio-o-carborane isomers: influence on the native conformation of myoglobin protein. Chem Eur J 16(29):8914–8922. doi:10.1002/chem.201000605

    Article  CAS  Google Scholar 

  24. Krois D, Lehner H (1993) Helically fixed chiral bilirubins and biliverdins—a new insight into the conformational, associative and dynamic features of linear tetrapyrrols. J Chem Soc-Perkin Trans 2(7):1351–1360. doi:10.1039/p29930001351

    Article  Google Scholar 

  25. Russell MP, Coulthurst SJ, Moore JN, Hester RE (1995) Resonance Raman study of the chromophore specific vibrational and electronic spectra of bilirubin. J Chem Soc-Faraday Trans 91(12):1751–1757. doi:10.1039/ft9959101751

    Article  CAS  Google Scholar 

  26. Hu SZ, Smith KM, Spiro TG (1996) Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin. J Am Chem Soc 118(50):12638–12646

    Article  CAS  Google Scholar 

  27. Abe M, Kitagawa T, Kyogoku Y (1978) Resonance Raman spectra of octaethylporphyrinato–Ni(II) and meso–deuterated and 15N substituted derivatives. I. Observation and assignments of nonfundamental Raman lines. J Chem Phys 69:4516–4526

    Article  Google Scholar 

  28. Hu JM, Moigno D, Kiefer W, Ma JS, Chen QQ, Wang CQ, Feng HT, Shen JK, Niu F, Gu YH (2000) Fourier-transform Raman and infrared spectroscopic analysis of novel biliverdin compounds. Spectrochimic Acta Mol Biomol Spectros 56(12):2365–2372

    Article  Google Scholar 

  29. Hu JM, Liang EJ, Duschek F, Kiefer W (1997) Resonance Raman spectroscopic study of free brilirubin and brilirubin complexes with copper(II), silver(I) and gold(III). Spectrochim Acta Mol Biomol Spectros 53(9):1431–1438. doi:10.1016/s0584-8539(96)01839-9

    Article  Google Scholar 

  30. Sanchez LA, Spiro TG (1985) Surface-enhanced raman-spectroscopy as a monitor of iron(III) protoporphyrin reduction at a silver electrode in aqueous and acetonitrile solutions—vibronic resonance enhancement amplified by surface enhancement. J Phys Chem 89(5):763–768. doi:10.1021/j100251a009

    Article  CAS  Google Scholar 

  31. Yeo BS, Maedler S, Schmid T, Zhang WH, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J Phys Chem C 112:4867–4873

    Article  CAS  Google Scholar 

  32. Cavalu S, Cinta-Pinzaru S, Leopold N, Kiefer W (2001) Raman and surface enhanced Raman spectroscopy of 2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy-3-carboxamide labeled proteins: bovine serum albumin and cytochrome c. Biopolymers 62:341–348

    Article  CAS  Google Scholar 

  33. Delfino I, Bizzarri AR, Cannistraro S (2005) Single-molecule detection of yeast cytochrome c by surface-enhanced Raman spectroscopy. Biophys Chem 113(1):41–51. doi:10.1016/j.bpc.2004.07.006

    Article  CAS  Google Scholar 

  34. Feng F, Zhi G, Jia HS, Cheng L, Tian YT, Li XJ (2009) SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20(29):doi:29550110.1088/0957-4484/20/29/295501

    Article  Google Scholar 

  35. Sari MA, Battioni JP, Dupre D, Mansuy D, Lepecq JB (1990) Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry 29:4205–4215

    Article  CAS  Google Scholar 

  36. Qu F, Zhu ZW, Li NQ (2000) Electrochemical studies of the hemin-DNA interaction. Electroanalysis 12(11):831–835

    Article  CAS  Google Scholar 

  37. Li SD, Su YD, Li M, Zou CG (2006) Hemin-mediated hemolysis in erythrocytes: effects of ascorbic acid and glutathione. Acta Biochim Et Biophys Sin 38(1):63–69. doi:10.1111/j.1745-7270.2006.00127.x

    Article  CAS  Google Scholar 

  38. Toader AM, Diaconu C, Volanschi E (2007) Spectroelectrochemical study of the hemin–glutathione interaction in the absence and presence of surfactants. ECS Trans 3(29):155–166

    Article  CAS  Google Scholar 

  39. Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione—a proposed mechanism to account for the high-levels of nonheme iron found in the membranes of hemoglobinopathic red-blood-cells. J Biol Chem 270(42):24876–24883

    Article  CAS  Google Scholar 

  40. Shviro Y, Shaklai N (1987) Glutathione as a scavenger of free hemin—a mechanism of preventing red-cell membrane damage. Biochem Pharmacol 36(22):3801–3807

    Article  CAS  Google Scholar 

  41. Huang GG, Hossain MK, Han XX, Ozaki Y (2009) A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions. Analyst 134:2468–2474

    Article  CAS  Google Scholar 

  42. Larsson M, Lindgren J (2005) Analysis of glutathione and immunoglobulin G inside chromatographic beads using surface-enhanced Raman scattering spectroscopy. J Raman Spectros 36:394–399

    Article  CAS  Google Scholar 

  43. Sheng C, Zhao H, Gu FK, Yang HF (2009) Effect of Pb2+ on l-glutathione monolayers on a silver surface investigated by surface-enhanced Raman scattering spectroscopy. J Raman Spectros 40:1274–1278

    Article  CAS  Google Scholar 

  44. Picquart M, Grajcar L, Baron MH, Abedinzadeh Z (1999) Vibrational spectroscopic study of glutathione complexation in aqueous solutions. Biospectroscopy 5:328–337

    Article  CAS  Google Scholar 

  45. Neugebauer U, Heinemann SH, Schmitt M, Popp J (2011) Combination of patch clamp and Raman spectroscopy for single-cell analysis. Anal Chem 83(1):344–350. doi:10.1021/ac1024667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by TMWFK PE114-1, DFG (FOR 1738 - Po563/17-1), BMBF (FKZ 01EO1002), European Union (EFRE), the Free State of Thuringia and Thüringer Aufbaubank (2008FE9112) are highly acknowledged. Mathias Köhler and Stefan Bode are highly acknowledged for assisting the resonance Raman measurements, Claudia Beleites for fruitful discussions and Gisela Persch for preparing the colloids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Popp.

Additional information

Published in the special paper collection Optical Biochemical and Chemical Sensors with guest editor Laura M. Lechuga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neugebauer, U., März, A., Henkel, T. et al. Spectroscopic detection and quantification of heme and heme degradation products. Anal Bioanal Chem 404, 2819–2829 (2012). https://doi.org/10.1007/s00216-012-6288-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6288-9

Keywords