Skip to main content
Log in

Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

Visibility map on the observation plane using five lines of the multi-step X-ray source

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Momose A, Fukuda J (1995) Med Phys 22:375–379

    Article  CAS  Google Scholar 

  2. Fitzgerald R (2000) Phys Today 53:23–26

    Article  Google Scholar 

  3. Lewis RA (2004) Phys Med Biol 49:3573–3583

    Article  CAS  Google Scholar 

  4. Momose A (2005) Jpn J Appl Phys 44:6355–6367

    Article  CAS  Google Scholar 

  5. Bonse U, Hart M (1965) Appl Phys Lett 6:155–156

    Article  Google Scholar 

  6. Momose A, Takeda T, Itai Y, Hirano K (1996) Nat Med 2:473–475

    Article  CAS  Google Scholar 

  7. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Nature 384:335–338

    Article  CAS  Google Scholar 

  8. Nugent KA, Gureyev TE, Cookson DF, Paganin D, Barnea Z (1996) Phys Rev Lett 77:2961–2964

    Article  CAS  Google Scholar 

  9. Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Nature 373:595–598

    Article  CAS  Google Scholar 

  10. Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Phys Med Biol 42:2015–2025

    Article  CAS  Google Scholar 

  11. Zhu P, Yuan Q, Huang W, Shu H, Gao B, Hu T, Wu Z (2005) Appl Phys Lett 87:264101

    Article  Google Scholar 

  12. David C, Nöhammer B, Solak HH, Ziegler E (2002) Appl Phys Lett 81:3287–3289

    Article  CAS  Google Scholar 

  13. Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Jpn J Appl Phys 42:L866–L868

    Article  CAS  Google Scholar 

  14. Momose A (2003) Opt Express 11:2303–2314

    Article  Google Scholar 

  15. Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) Opt Express 13:6296–6304

    Article  Google Scholar 

  16. Nesterets YI, Wilkins SW (2008) Opt Express 16:5849–5867

    Article  Google Scholar 

  17. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Nat Phys 2:258–261

    Article  CAS  Google Scholar 

  18. Weitkamp T, David C, Kottler C, Bunk O, Pfeiffer F (2006) Proc SPIE 6318:63180S

    Article  Google Scholar 

  19. Kottler C, David C, Pfeiffer F, Bunk O (2007) Opt Express 15:1175–1181

    Article  CAS  Google Scholar 

  20. Pfeiffer F, Kotter C, Bunk O, David C (2007) Phys Rev Lett 98:108105

    Article  CAS  Google Scholar 

  21. Kottler C, Pfeiffer F, Bunk O, Grunzweig C, Bruder J, Kaufmann R, Tlustos L, Walt H, Briod I, Weitkamp T, David C (2007) Phys Stat Sol (A) 204(8):2728–2733

    Article  CAS  Google Scholar 

  22. Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E, Brönnimann CH, Grünzweig C, David C (2008) Nat Mater 7:134–137

    Article  CAS  Google Scholar 

  23. Pfeiffer F, Bech M, Bunk O, Donath T, Henrich B, Kraft P, David C (2009) J Appl Phys 105:102006

    Article  Google Scholar 

  24. David C, Bruder J, Rohbeck T, Grünzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F (2009) Microelectron Eng 84:1172–1177

    Article  Google Scholar 

  25. Noda D, Tsujii H, Takahashi N, Hattori T (2010) Microsyst Technol 16:1309–1313

    Article  CAS  Google Scholar 

  26. Niu H, Guo J, Wang K, Yang Q (2006) C.N. Patent No 200610062487.1

  27. Momose A, Yashiro W, Kuwabara H, Kawabata K (2009) Jpn J Appl Phys 48:076512

    Article  Google Scholar 

  28. Lei Y, Liu X, Guo J, Zhao Z, Niu H (2010) Chin Phys B 20:042901

    Article  Google Scholar 

  29. Rutishauser S, Zanette I, Donath T, Sahlholm A, Linnros J, David C (2011) Appl Phys Lett 98:171107

    Article  Google Scholar 

  30. Liu X, Lei Y, Zhao Z, Guo J, Niu H (2010) Acta Phys Sin 59:6927–6932

    Google Scholar 

  31. Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M (2011) Appl Phys Lett 99:041111

    Article  Google Scholar 

  32. Wang Z, Zhu P, Huang W, Yuan Q, Liu X, Zhang K, Hong Y, Zhang H, Ge X, Gao K, Wu Z (2010) Anal Bioanal Chem 397:2137–2141

    Article  CAS  Google Scholar 

  33. Wang Z, Zhu P, Huang W, Yuan Q, Liu X, Zhang K, Hong Y, Zhang H, Ge X, Gao K, Wu Z (2010) Anal Bioanal Chem 397:2091–2094

    Article  CAS  Google Scholar 

  34. Thüring T, Modregger P, Pinzer BR, Wang Z, Rutishauser S, David C, Grund T, Kenntner J, Stampanoni M (2011) Proc SPIE 7961:79611G

    Article  Google Scholar 

  35. Du Y, Liu X, Lei Y, Guo J, Niu H (2011) Opt Express 19:22669–22674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grants 60532090, 61001184, and 61101175), and the Science and Technology Bureau of Shenzhen (grants JC201005280502A and CXB201005240011A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanben Niu.

Additional information

Yang Du and Jianheng Huang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Huang, J., Lin, D. et al. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry. Anal Bioanal Chem 404, 793–797 (2012). https://doi.org/10.1007/s00216-012-6178-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6178-1

Keywords

Navigation