Skip to main content
Log in

Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study describes a highly efficient method for the selective precipitation of phosphoproteins by trivalent europium, terbium, and erbium metal ions. These metal cations belong to the group of lanthanides and are known to be hard acceptors with an overwhelming preference for oxygen-containing anions such as phosphates to which they form very tight ionic bonds. The method could be successfully applied to specifically precipitate phosphoproteins from complex samples including milk and egg white by forming solid metal–protein complexes. Owing to the low solubility product of the investigated lanthanide salts, the produced metal–protein complexes showed high stability. The protein pellets were extensively washed to remove nonphosphorylated proteins and contaminants. For the analysis of proteins the pellets were first dissolved in 30 % formic acid and subjected to matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) MS. For peptide mass-fingerprint analysis the precipitated phosphoproteins were enzymatically digested using microwave-assisted digestion. The method was found to be highly specific for the isolation and purification of phosphoproteins. Protein quantification was performed by colorimetric detection of total precipitated phosphoproteins and revealed more than 95 % protein recovery for each lanthanide salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912

    Article  CAS  Google Scholar 

  2. Delom F, Chevet E (2006) Phosphoprotein analysis: from proteins to proteomes. Proteome Science 4(1):15

    Article  Google Scholar 

  3. Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  Google Scholar 

  4. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261

    Article  CAS  Google Scholar 

  5. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  Google Scholar 

  6. Moser K, White FM (2006) Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res 5(1):98–104

    Article  CAS  Google Scholar 

  7. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892

    Article  CAS  Google Scholar 

  8. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  9. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF (2003) Phosphoproteome analysis of capacitated human sperm. J Biol Chem 278(13):11579–11589

    Article  CAS  Google Scholar 

  10. Wolschin F, Wienkoop S, Weckwerth W (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5(17):4389–4397

    Article  CAS  Google Scholar 

  11. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886

    Article  CAS  Google Scholar 

  12. Kweon HK, Håkansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78(6):1743–1749

    Article  CAS  Google Scholar 

  13. Leitner A (2010) Phosphopeptide enrichment using metal oxide affinity chromatography. TrAC Trends Anal Chem 29(2):177–185

    Article  CAS  Google Scholar 

  14. Li Y, Lin H, Deng C, Yang P, Zhang X (2008) Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide–coated magnetic microspheres for MALDI–TOF–MS and nano–LC–ESI–MS/MS/MS analysis. Proteomics 8(2):238–249

    Article  CAS  Google Scholar 

  15. Lee A, Yang HJ, Lim ES, Kim J, Kim Y (2008) Enrichment of phosphopeptides using bare magnetic particles. Rapid Commun Mass Spectrom 22(16):2561–2564

    Article  CAS  Google Scholar 

  16. Ficarro SB, Parikh JR, Blank NC, Marto JA (2008) Niobium(V) oxide (Nb2O5): application to phosphoproteomics. Anal Chem 80(12):4606–4613

    Article  CAS  Google Scholar 

  17. Rivera JG, Choi YS, Vujcic S, Wood TD, Colón LA (2009) Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis. Analyst 134(1):31–33

    Article  CAS  Google Scholar 

  18. Qi D, Lu J, Deng C, Zhang X (2009) Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J Chromatogr A 1216(29):5533–5539

    Article  CAS  Google Scholar 

  19. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237

    Article  CAS  Google Scholar 

  20. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

    CAS  Google Scholar 

  21. Thingholm TE, Jensen ON, Larsen MR (2009) Enrichment and separation of mono-and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol Biol 527:67–78

    Article  CAS  Google Scholar 

  22. Yu YQ, Fournier J, Gilar M, Gebler JC (2009) Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction. J Sep Sci 32(8):1189–1199

    Article  CAS  Google Scholar 

  23. Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109

    Article  CAS  Google Scholar 

  24. Mazanek M, Mituloviæ G, Herzog F, Stingl C, Hutchins JRA, Peters JM, Mechtler K (2006) Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat Protoc 2(5):1059–1069

    Article  Google Scholar 

  25. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21(22):3635–3645

    Article  CAS  Google Scholar 

  26. Zhang X, Ye J, Jensen ON, Roepstorff P (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6(11):2032–2042

    Article  CAS  Google Scholar 

  27. Xia Q, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7(7):2845–2851

    Article  CAS  Google Scholar 

  28. Ruse CI, McClatchy DB, Lu B, Cociorva D, Motoyama A, Park SK, Yates Iii JR (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7(5):2140–2150

    Article  CAS  Google Scholar 

  29. Chang MF, White JL, Nail SL, Hem SL (1997) Role of the electrostatic attractive force in the adsorption of proteins by aluminum hydroxide adjuvant. PDA J Pharm Sci Technol 51(1):25–29

    CAS  Google Scholar 

  30. Iyer S, HogenEsch H, Hem SL (2003) Effect of the degree of phosphate substitution in aluminum hydroxide adjuvant on the adsorption of phosphorylated proteins. Pharm Dev Technol 8(1):81–86

    Article  CAS  Google Scholar 

  31. Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal–affinity chromatography. Proteomics 5(18):4678–4683

    Article  CAS  Google Scholar 

  32. Pandey A, Fernandez MM, Steen H, Blagoev B, Nielsen MM, Roche S, Mann M, Lodish HF (2000) Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J Biol Chem 275(49):38633–38639

    Article  CAS  Google Scholar 

  33. Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies. Mol Cell Proteomics 1(7):517–527

    Article  Google Scholar 

  34. Pink M, Verma N, Polato F, Bonn GK, Baba HA, Rettenmeier AW, Schmitz-Spanke S (2011) Precipitation by lanthanum ions: a straightforward approach to isolating phosphoproteins. J Proteomics 75(2):375–83

    Article  CAS  Google Scholar 

  35. Polato F, Rainer M, Gjerde D, Bonn GK (2011) Method and device for the isolation of phosphoproteins, glycoproteins and fragments thereof. US Patent Application US 13/270,148, 11 October 2011

  36. Liu X, Byrne RH (1997) Rare earth and yttrium phosphate solubilities in aqueous solution. Geochim Cosmochim Acta 61(8):1625–1633

    Article  CAS  Google Scholar 

  37. Jensen RG (1995) Handbook of milk composition. Academic, London

  38. Mine Y (1995) Recent advances in the understanding of egg white protein functionality. Trends Food Sci Technol 6(7):225–232

    Article  CAS  Google Scholar 

  39. Guerin-Dubiard C, Pasco M, Hietanen A, Quiros del Bosque A, Nau F, Croguennec T (2005) Hen egg white fractionation by ion-exchange chromatography. J Chromatogr A 1090(1–2):58–67

    Article  CAS  Google Scholar 

  40. Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244(17):4628

    CAS  Google Scholar 

  41. Harris WR, Yang B, Abdollahi S, Hamada Y (1999) Steric restrictions on the binding of large metal ions to serum transferrin. J Inorg Biochem 76(3–4):231–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation (FWF), SFB-Project 021 (Vienna, Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Rainer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güzel, Y., Rainer, M., Mirza, M.R. et al. Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions. Anal Bioanal Chem 403, 1323–1331 (2012). https://doi.org/10.1007/s00216-012-5917-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5917-7

Keywords

Navigation