Skip to main content
Log in

Current use of high-resolution mass spectrometry in the environmental sciences

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

During the last two decades, mass spectrometry (MS) has been increasingly used in the environmental sciences with the objective of investigating the presence of organic pollutants. MS has been widely coupled with chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC), because of their complementary nature when facing a broad range of organic pollutants of different polarity and volatility. A clear trend has been observed, from the very popular GC–MS with a single quadrupole mass analyser, to tandem mass spectrometry (MS–MS) and, more recently, high-resolution mass spectrometry (HRMS). For years GC has been coupled to HR magnetic sector instruments, mostly for dioxin analysis, although in the last ten years there has been growing interest in HRMS with time-of-flight (TOF) and Orbitrap mass analyzers, especially in LC–MS analysis. The increasing interest in the use of HRMS in the environmental sciences is because of its suitability for both targeted and untargeted analysis, owing to its sensitivity in full-scan acquisition mode and high mass accuracy. With the same instrument one can perform a variety of tasks: pre- and post-target analysis, retrospective analysis, discovery of metabolite and transformation products, and non-target analysis. All these functions are relevant to the environmental sciences, in which the analyst encounters thousands of different organic contaminants. Thus, wide-scope screening of environmental samples is one of the main applications of HRMS. This paper is a critical review of current use of HRMS in the environmental sciences. Needless to say, it is not the intention of the authors to summarise all contributions of HRMS in this field, as in classic descriptive reviews, but to give an overview of the main characteristics of HRMS, its strong potential in environmental mass spectrometry and the trends observed over the last few years. Most of the literature has been acquired since 2005, coinciding with the growth and popularity of HRMS in this field, with a few exceptions that deserve to be mentioned because of their relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gross JH (2004) Mass spectrometry. A textbook, 2nd edn. Springer, London, p 615

    Google Scholar 

  2. Matsuo T (1989) Mass Spectrom Rev 8:203–236

    Article  CAS  Google Scholar 

  3. McDowell CA (1963) Mass Spectrometry. McGraw–Hill, New York, p 639

    Google Scholar 

  4. University of Bristol. The History of Mass Spectrometry [Internet]. July 1, 2005 [cited Sept 9, 2011] Available from: http://www.chm.bris.ac.uk/ms/history.html

  5. Marshall AG, Hendrickson CL (2008) Annu Rev Anal Chem 1:579–599

    Article  CAS  Google Scholar 

  6. Watson JT, Sparkman OD (2008) Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation, 4th edn. John Wiley & Sons Ltd, Chichester, p 862

    Google Scholar 

  7. Richardson SD (2006) Anal Chem 78:4021–4045

    Article  CAS  Google Scholar 

  8. Richardson SD (2008) Anal Chem 80:4373–4402

    Article  CAS  Google Scholar 

  9. Richardson SD (2010) Anal Chem 82:4742–4774

    Article  CAS  Google Scholar 

  10. Hernández F, Portolés T, Pitarch E, López FJ (2011) Trends Anal Chem 30:388–400

    Article  Google Scholar 

  11. Hernández F, Pozo OJ, Sancho JV, López FJ, Marín JM, Ibáñez M (2005) Trends Anal Chem 24:596–612

    Article  Google Scholar 

  12. Sancho JV, Pozo ÓJ, Ibáñez M, Hernández F (2006) Anal Bioanal Chem 386:987–997

    Article  CAS  Google Scholar 

  13. Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27:481–489

    Article  Google Scholar 

  14. Krauss M, Singer H, Hollender J (2010) Anal Bioanal Chem 397:943–951

    Article  CAS  Google Scholar 

  15. Petrovic M, Barceló D (2006) J Mass Spectrom 41:1259–1267

    Article  CAS  Google Scholar 

  16. Ferrer I, Thurman EM (2009). Liquid chromatography time-of-flight mass spectrometry. Principles, tools and applications for accurate mass analysis. Volume 173. A John Wiley & Sons, Inc, 261 p

  17. Van Babel B, Abad E (2008) Anal Chem 80:3956–3964

    Article  Google Scholar 

  18. Eljarrat E, Barceló D (2002) J Mass Spectrom 37:1105–1117

    Article  CAS  Google Scholar 

  19. Eppe G, Focant J-F, Pirard C, de Pauw E (2001) Organohalogen Compd 50:186–189

    CAS  Google Scholar 

  20. Griep-Raming J, Ahlbrand S, Krumwiede D, Huebschmann HJ (2007) Organohalogen Compd 69:1197–1198

    Google Scholar 

  21. Santos FJ, Galceran MT, Caixach J, Huguet X, Rivera J (1996) Rapid Commun Mass Spectrom 10:1774–1780

    Article  CAS  Google Scholar 

  22. Santos FJ, Galceran MT, Caixach J, Rivera J, Huguet X (1997) Rapid Commun Mass Spectrom 11:341–348

    Article  CAS  Google Scholar 

  23. Santos FJ, Galceran MT (2003) J Chromatogr A 1000:125–151

    Article  CAS  Google Scholar 

  24. Patterson DG, Welch SM, Turner WE, Sjödin A, Focant JF (2011) J Chromatogr A 1218:3274–3281

    Article  CAS  Google Scholar 

  25. Focant J (2008) Organohalogen Compd 70:1–5

    Google Scholar 

  26. Tondeur Y, Niederhut WN, Campana JE, Missler SR (1987) Biomed Environ Mass Spectrom 14:449–456

    Article  CAS  Google Scholar 

  27. Čajka T, Hajšlová J (2007) LC–GC Europe 20

  28. Williamson LN, Bartlett MG (2007) Biomed Chromatogr 21:664–669

    Article  CAS  Google Scholar 

  29. Peters RJB, Stolker AAM, Mol JGJ, Lommen A, Lyris E, Angelis Y, Vonaparti A, Stamou M, Georgakopoulos C, Nielen MWF (2010) Trends Anal Chem 29:1250–1268

    Article  CAS  Google Scholar 

  30. Hernández F, Portolés T, Pitarch E, López FJ (2007) Anal Chem 79:9494–9504

    Article  Google Scholar 

  31. Grange AH, Genicola FA, Sovocool W (2002) Rapid Commun Mass Spectrom 16:2356–2369

    Article  CAS  Google Scholar 

  32. Hayward DG, Wong JW (2009) Anal Chem 81:5716–5723

    Article  CAS  Google Scholar 

  33. Hernández F, Portolés T, Pitarch E, López FJ (2009) J Mass Spectrom 44:1–11

    Article  Google Scholar 

  34. Georgakopoulos CG, Vonaparti A, Stamou M, Kiousi P, Lyris E, Angelis YS, Tsoupras G, Wuest B, Nielen MWF, Panderi I, Koupparis M (2007) Rapid Commun Mass Spectrom 21:2469–2446

    Article  Google Scholar 

  35. Petucci C, Mallis L (2005) Rapid Commun Mass Spectrom 19:1492–1498

    Article  CAS  Google Scholar 

  36. Čajka T, Hajšlová J, Lacina O, Mastovska K, Lehotay SJ (2008) J Chromatogr A 1186:281–294

    Article  Google Scholar 

  37. Čajka T, Hajšlová J, Kazda R, Poustka J (2005) J Sep Sci 28:601–611

    Article  Google Scholar 

  38. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2007) J Chromatogr A 1166:152–162

    Article  CAS  Google Scholar 

  39. Portolés T, Pitarch E, López FJ, Hernández F (2011) J Chromatogr A 1218:303–315

    Article  Google Scholar 

  40. Serrano R, Nácher-Mestre J, Portolés T, Amat F, Hernández F (2011) Talanta 85:877–884

    Article  CAS  Google Scholar 

  41. Nácher-Mestre J, Serrano R, Portolés T, Hernández F (2011) Anal Meth 3:1779–1785

    Article  Google Scholar 

  42. Portolés T, Sancho JV, Hernández F, Newton A, Hancock P (2010) J Mass Spectrom 45:926–936

    Article  Google Scholar 

  43. Portolés T, Pitarch E, López FJ, Hernández F, Niessen WMA (2011) Rapid Commun Mass Spectrom 25:1589–1599

    Article  Google Scholar 

  44. Schymanski EL, Bataineh M, Goss K, Brack W (2009) Trends Anal Chem 28:550–561

    Article  CAS  Google Scholar 

  45. Kind T, Fiehn O (2007) BMC Bioinformatics, 8 art 105

  46. Kind T, Fiehn O (2010) Bioanal Rev 2:23–31

    Article  Google Scholar 

  47. Hogenboom AC, Niessen WMA, Little D, Brinkman UATh (1999) Rapid Commun Mass Spectrom 13:125–133

    Article  CAS  Google Scholar 

  48. Hogenboom AC, Niessen WMA, Brinkman UATh (2000) Rapid Commun Mass Spectrom 14:1914–1924

    Article  CAS  Google Scholar 

  49. Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74

    Article  CAS  Google Scholar 

  50. Ibáñez M, Sancho JV, Pozo ÓJ, Hernández F (2004) Anal Chem 76:1328–1335

    Article  Google Scholar 

  51. Ibáñez M, Sancho JV, Pozo ÓJ, Niessen W, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178

    Article  Google Scholar 

  52. Hernández F, Ibáñez M, Sancho JV, Pozo ÓJ (2004) Anal Chem 76:4349–4357

    Article  Google Scholar 

  53. Ibáñez M, Guerrero C, Sancho JV, Hernández F (2009) J Chromatogr A 1216:2529–2539

    Article  Google Scholar 

  54. Bijlsma L, Sancho JV, Hernández F, Niessen WMA (2011) J Mass Spectrom 46:865–875

    Article  CAS  Google Scholar 

  55. Nurmi J, Pellinen J (2011) J Chromatogr A 1218:6712–6719

    Article  CAS  Google Scholar 

  56. Díaz R, Ibáñez M, Sancho JV, Hernández F (2012) Anal Meth 4:196–209

    Article  Google Scholar 

  57. Hernández F, Sancho JV, Ibáñez M, Portolés T (2011). TOF and QTOF MS for identifying unknown contaminants and degradation products in the environment in Encyclopedia of Analytical Chemistry, eds R.A. Meyers, John Wiley: Chichester. DOI:9780470027318.a9233. Published December 15, 2011

  58. Wille K, Vanden Bussche J, Noppe H, De Wulf E, Van Caeter P, Janssen CR, De Brabander HF, Vanhaecke L (2010) J Chromatogr A 1217:6616–6622

    Article  CAS  Google Scholar 

  59. Lara-Martín PA, González-Mazo E, Brownawell BJ (2011) J Chromatogr A 1218:4799–4807

    Article  Google Scholar 

  60. Farré M, Gros M, Hernández B, Petrovic M, Hancock P, Barceló D (2008) Rapid Commun Mass Spectrom 22:41–51

    Article  Google Scholar 

  61. Ferrer I, Thurman EM (2007) J Chromatogr A 1175:24–37

    Article  CAS  Google Scholar 

  62. Petrovic M, Gros M, Barcelo D (2006) J Chromatogr A 1124:68–81

    Article  CAS  Google Scholar 

  63. Commision Decision 2002/657/EC (2002) Off J Eur Commun 221:8

    Google Scholar 

  64. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) Rapid Commun Mass Spectrom 20:1989–1994

    Article  CAS  Google Scholar 

  65. Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Rapid Commun Mass Spectrom 25:355–369

    Article  Google Scholar 

  66. Hernández F, Bijlsma L, Sancho JV, Díaz R, Ibáñez M (2011) Anal Chim Acta 684:96–106

    Article  Google Scholar 

  67. Uncetaa N, Sampedroa MC, Abu Bakarb NK, Gómez-Caballeroa A, Goicoleaa MA, Barrioa RJ (2010) J Chromatogr A 1217:3392–3399

    Article  Google Scholar 

  68. Terzic S, Ahel M (2011) Environ Pollut 159:557–566

    Article  CAS  Google Scholar 

  69. Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR (2007) Anal Chem 79:9372–9384

    Article  Google Scholar 

  70. Hernández F, Ibáñez M, Gracia-Lor E, Sancho JV (2011) J Sep Sci 34:3517–3526

    Article  Google Scholar 

  71. Thurman EM, Ferrer I, Zweigenbaum JA, García-Reyes JF, Woodman M, Fernández-Alba AR (2005) J Chromatogr A 1082:71–80

    Article  CAS  Google Scholar 

  72. García-Reyes JF, Molina-Díaz A, Fernández-Alba AR (2007) Anal Chem 79:307–321

    Article  Google Scholar 

  73. Hernández F, Grimalt S, Pozo ÓJ, Sancho JV (2009) J Sep Sci 32:2245–2261

    Article  Google Scholar 

  74. Hernández F, Ibáñez M, Pozo ÓJ, Sancho JV (2008) J Mass Spectrom 43:173–184

    Article  Google Scholar 

  75. Peschka M, Petrovic M, Knepper TP, Barceló D (2007) Anal Bioanal Chem 388:1227–1234

    Article  CAS  Google Scholar 

  76. Lambropoulou DA, Konstantinou IK, Albanis TA, Fernández-Alba AR (2011) Chemosphere 83:367–378

    Article  CAS  Google Scholar 

  77. Yao HB, Han GJ, Liu GX, Xie Y, Wang CH (2010) Bull Environ Contam Toxicol 85:142–146

    Article  CAS  Google Scholar 

  78. Kosjek T, Žigon D, Kralj B, Heath E (2008) J Chromatogr A 1215:57–63

    Article  CAS  Google Scholar 

  79. Pérez S, Eichhorn P, Barceló D (2007) Anal Chem 79:8293–8300

    Article  Google Scholar 

  80. Postigo C, Sirtori C, Oller I, Malato S, Maldonado MI, López de Alda M, Barceló D (2011) Appl Catal B Environ 104:37–48

    Article  CAS  Google Scholar 

  81. Radjenović J, Pérez S, Petrović M, Barceló D (2008) J Chromatogr A 1210:142–153

    Article  Google Scholar 

  82. Hardman M, Makarov A (2003) Anal Chem 75:1699–1705

    Article  CAS  Google Scholar 

  83. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Gooks RG (2005) J Mass Spectrom 40:430–443

    Article  CAS  Google Scholar 

  84. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Anal Chem 78:2113–2120

    Article  CAS  Google Scholar 

  85. Kellmann M, Muenster H, Zomer P, Mol HJ (2009) J Am Soc Mass Spectrom 20:1464–1476

    Article  CAS  Google Scholar 

  86. Makarov A, Scigelova M (2010) J Chromatogr A 1217:3938–3945

    Article  CAS  Google Scholar 

  87. Perry RH, Cooks RG, Noll RJ (2008) Mass Spectrom Rev 27:661–699

    Article  CAS  Google Scholar 

  88. Krauss M, Hollender J (2008) Anal Chem 80:834–842

    Article  CAS  Google Scholar 

  89. Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216:510–519

    Article  CAS  Google Scholar 

  90. Van Leerdam JA, Hogenboom AC, van der Kooi MME, de Voogt P (2009) Int J Mass Spectrom 282:99–107

    Article  Google Scholar 

  91. Schriks M, Van Leerdam JA, Van Der Linden SC, Van Der Burg B, Van Wezel AP, De Voogt P (2010) Environ Sci Technol 44:4766–4774

    Article  CAS  Google Scholar 

  92. Maquille A, Salembier S, Hérent MF, Habib-Jiwan JL (2010) J Photochem Photobiol A 214:224–229

    Article  CAS  Google Scholar 

  93. Peterson AC, McAlister GC, Quarmby ST, Griep-Raming J, Coon JJ (2010) Anal Chem 82:8618–8628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Josep Rivera, Dr Josep Caixach, and Jordi Sauló for their encouragement and helpful comments on the magnetic sector parts of this manuscript. Dr Dirk Krumwiede from ThermoFisher Scientific is also acknowledged. The authors from University Jaume I acknowledge the support of Generalitat Valenciana as research group of excellence (Prometeo, 2009/054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hernández.

Additional information

Published in the special issue High-Resolution Mass Spectrometry with guest editors Hans H. Maurer and David C. Muddiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, F., Sancho, J.V., Ibáñez, M. et al. Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403, 1251–1264 (2012). https://doi.org/10.1007/s00216-012-5844-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5844-7

Keywords

Navigation