Skip to main content
Log in

Completely automated in-syringe dispersive liquid–liquid microextraction using solvents lighter than water

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the development of a new multisyringe flow injection analysis set-up that enables the complete automation of the dispersive liquid–liquid microextraction (DLLME) technique using solvents lighter than water. Its hyphenation with a liquid chromatographic separation is implemented using a single multisyringe pump obtaining a compact, simple, easy to operate, and fast instrument. DLLME is carried out with a throughput of 42 h−1 and DLLME for the extraction of benzo(a)pyrene and its subsequent chromatographic determination can be carried out with an analysis throughput of 7 h−1.

The extraction of benzo(a)pyrene has been accomplished developed a new completely automated in-syringe dispersive liquid-liquid microextraction by means of the Multisyringe flow injection analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rezaee M, Assadi Y, Hosseinia MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  2. Farajzadeh MA, Bahram M, Jonsson JA (2007) Anal Chim Acta 591:69–79

    Article  CAS  Google Scholar 

  3. Liang P, Xu J, Li Q (2008) AnalChim Acta 609:53–58

    Article  CAS  Google Scholar 

  4. Fattahi N, Assadi Y, Hosseini MRM, Jahromi EZ (2007) J Chromatogr A 1157:23–29

    Article  CAS  Google Scholar 

  5. Nagaraju D, Huang SD (2007) J Chromatogr A 1161:89–97

    Article  CAS  Google Scholar 

  6. Naseri MT, Hosseini MRM, Assadi Y, Kiani A (2008) Talanta 75:56–62

    Article  CAS  Google Scholar 

  7. Shokoufi N, Shemirani F, Assady Y (2007) Anal Chim Acta 597:349–356

    Article  CAS  Google Scholar 

  8. Liu Y, Zhao EC, Zhu WT, Gao HX, Zhou ZQ (2009) J Chromatogr A 1216:885–891

    Article  CAS  Google Scholar 

  9. Leong MI, Huang SD (2008) J Chromatogr A 1211:8–12

    Article  CAS  Google Scholar 

  10. Pena-Pereira F, Lavilla I, Bendicho C (2009) Spectrochim Acta B 64:1–15

    Article  Google Scholar 

  11. Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MA (2010) Trends AnalChem 29:728–751

    Article  CAS  Google Scholar 

  12. Dadfamia S, Shabani AMH (2010) AnalChim Acta 658:107–119

    Article  Google Scholar 

  13. Ojeda CB, Rojas FS (2009) Chromatographia 69:1149–1159

    Article  Google Scholar 

  14. Zang X-H, Wu Q-H, Zhang M-Y, Xi G-H, Wang Z (2009) Chinese J AnalChem 37:161–168

    Article  CAS  Google Scholar 

  15. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A1217:2342–2357

    Article  Google Scholar 

  16. Ruzicka J, Marshall GD (1990) Anal Chim Acta 237:329–343

    Article  CAS  Google Scholar 

  17. Economou A (2005) Trends Anal Chem 24:416–425

    Article  CAS  Google Scholar 

  18. Anthemidis AN, Ioannou KIG (2009) Talanta 79:86–91

    Article  CAS  Google Scholar 

  19. Anthemidis AN, Ioannou KIG (2010) Anal Chim Acta 668:35–40

    Article  CAS  Google Scholar 

  20. Cerdà V, Estela JM, Forteza R, Cladera A, Becerra E, Altimira P, Sitjar P (1999) Talanta 50:695–705

    Article  Google Scholar 

  21. Cerdà V, Forteza R, Estela JM (2007) AnalChim Acta 600:35–45

    Article  Google Scholar 

  22. Maya F, Estela JM, Cerdà V (2010) Talanta 80:1333–1340

    Article  CAS  Google Scholar 

  23. Fernandez C, Larrechi MS, Forteza R, Cerdà V, Callao MP (2010) Talanta 82:137–142

    Article  CAS  Google Scholar 

  24. Datinsky D, Solich P, Chocholous P, Karlicek R (2003) Anal Chim Acta 499:205–214

    Article  Google Scholar 

  25. Chocholous P, Solich P, Satinsky D (2007) Anal Chim Acta 600:129–135

    Article  CAS  Google Scholar 

  26. Björklund E, Maya F, Bak SA, Hansen M, Estela JM, Cerdà V (2011) MicrochemJ 98:190–199

    Article  Google Scholar 

  27. Infante CMC, Urio RD, Masini JC (2011) AnalLett 44:503–513

    CAS  Google Scholar 

Download references

Acknowledgments

F. M. thanks the Conselleria d’Economia, Hisenda i Innovació from the Government of the Balearic Islands (CAIB) for allocation of a PhD stipend. The authors are grateful to the Ministerio de Ciencia y Tecnología (Spain) for financial support through projectCTQ2010-15541. The authors extended their appreciation to Prof. J. G. March for the provision of reagents/solvents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Cerdà.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Chemicals, instrumentation, detailed methodology, and additional experimental content is available under the Electronic supplementary material (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maya, F., Estela, J.M. & Cerdà, V. Completely automated in-syringe dispersive liquid–liquid microextraction using solvents lighter than water. Anal Bioanal Chem 402, 1383–1388 (2012). https://doi.org/10.1007/s00216-011-5572-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5572-4

Keywords

Navigation