Skip to main content
Log in

Separation of α-tocotrienol oxidation products and eight tocochromanols by HPLC with DAD and fluorescence detection and identification of unknown peaks by DAD, PBI-EIMS, FTIR, and NMR

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tocotrienols, like tocopherols, are members of the vitamin E family. While tocopherols (T) have been studied intensively, only recently have tocotrienols (T3) received increased attention due to their special health benefits. However, these positive attributes of T3 are probably lost as a result of degradation during food storage and processing, and there is little information about their oxidation products. Of particular interest are the oxidation products of α-tocotrienol (α-T3) as this is the least thermostable T3 isomer with the highest rate of degradation. The objective of this study was therefore to develop a reliable method for the determination of the most important oxidation products of α-T3 along with other tocochromanol isomers. We developed a high-performance liquid chromatography method with diode array detection, fluorescence detection, and a particle beam interface electron impact mass spectroscopy in order to separate the most important oxidation products of α-T3 (α-T3 spirodimers/spirotrimers, α-tocotrienoldihydroxy dimer, 7-formyl-β-tocotrienol (7-FβT3), 5-formyl-γ-tocotrienol (5-FγT3), α-tocotrienolquinone (α-T3Q), and α-T3Q dimers and α-tocotrienolquinone epoxides (α-T3QE)) from eight tocochromanol isomers. Furthermore, we sought to identify the as yet unknown oxidation products 5-FγT3, 7-FβT3, α-T3Q-dimer, and α-T3QE. Of these, 5-FγT3 was fully characterized by Fourier transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-FγT:

5-Formyl-γ-tocopherol

5-FγT3:

5-Formyl-γ-tocotrienol

7-FβT:

7-Formyl-β-tocopherol

7-FβT3:

7-Formyl-β-tocotrienol

AIBN:

Azobisisobutyronitrile

DAD:

Diode array detection

EIMS:

Electron impact mass spectroscopy

F:

Fluorescence

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High-performance liquid chromatography

MS:

Mass spectroscopy

NMR:

Nuclear magnetic resonance spectroscopy

PBI:

Particle beam interface

SIBL:

Strain-induced bond localization

TBME:

tert-Butyl methyl ether

UV–Vis:

Ultraviolet–visible spectroscopy

α-, β-, γ-, δ-T:

α- β-, γ-, δ-Tocopherol

α-, β-, γ-, δ-T3:

α-, β-, γ-, δ-Tocotrienol

α-T3-DHD:

α-Tocotrienol dihydroxydimer

α-T3Q:

α-Tocotrienolquinone

α-T3QE:

α-Tocotrienolquinone epoxide

α-T3QM:

α-Tocotrienolquinone methide

α-T3-SPD:

α-Tocotrienol spirodimer

α-T-DHD:

α-Tocopherol dihydroxydimer

α-TQ:

α-Tocopherolquinone

α-TQE:

α-Tocopherolquinone epoxide

α-TQM:

α-Tocopherolquinone methide

α-T-SPD:

α-Tocopherol spirodimer

α-T-SPT:

α-Tocopherol spirotrimers

References

  1. Seppanen CM, Song QH, Csallany AS (2010) The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J Am Oil Chem Soc 87(5):469–481

    Article  CAS  Google Scholar 

  2. Khanna S, Parinandi NL, Kotha SR, Roy S, Rink C, Bibus D, Sen CK (2010) Nanomolar vitamin E α-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. J Neurochem 112(5):1249–1260

    Article  CAS  Google Scholar 

  3. Sen CK, Khanna S, Roy S (2007) Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Asp Med 28(5–6):692–728

    Article  CAS  Google Scholar 

  4. Serbinova E, Kagan V, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 10(5):263–275

    Article  CAS  Google Scholar 

  5. KamalEldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  Google Scholar 

  6. Nystrom L, Lampi AM, Andersson AAM, Kamal-Eldin A, Gebruers K, Courtin CM, Delcour JA, Li L, Ward JL, Fras A, Boros D, Rakszegi M, Bedo Z, Shewry PR, Piironen V (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN Diversity Screen. J Agric Food Chem 56(21):9758–9766

    Article  CAS  Google Scholar 

  7. McLaughlin PJ, Weihrauch JL (1979) Vitamin E content of foods. J Am Diet Assoc 75(6):647–665

    CAS  Google Scholar 

  8. Piironen V, Varo P, Koivistoinen P (1988) Stability of tocopherols and tocotrienols during storage of foods. J Food Compost Anal 1(2):124–129

    Article  Google Scholar 

  9. Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 103(21):6472–6477

    Article  CAS  Google Scholar 

  10. Mukai K, Noborio S, Nagaoka S (2005) Why is the order reversed? Peroxyl-scavenging activity and fats-and-oils protecting activity of vitamin E. Int J Chem Kinet 37(10):605–610

    Article  CAS  Google Scholar 

  11. Wagner KH, Wotruba F, Elmadfa I (2001) Antioxidative potential of tocotrienols and tocopherols in coconut fat at different oxidation temperatures. Eur J Lipid Sci Technol 103(11):746–751

    Article  CAS  Google Scholar 

  12. Romero N, Robert P, Masson L, Ortiz J, Pavez J, Garrido C, Foster M, Dobarganes C (2004) Effect of α-tocopherol and α-tocotrienol on the performance of Chilean hazelnut oil (Gevuina avellana Mol) at high temperature. J Sci Food Agric 84(9):943–948

    Article  CAS  Google Scholar 

  13. Peterson DM (1995) Oat tocols—concentration and stability in oat products and distribution within the kernel. Cereal Chem 72(1):21–24

    CAS  Google Scholar 

  14. Ko SN, Kim CJ, Kim CT, Kim Y, Kim IH (2010) Effects of tocopherols and tocotrienols on the inhibition of autoxidation of conjugated linoleic acid. Eur J Lipid Sci Technol 112(4):496–501

    Article  CAS  Google Scholar 

  15. Tavadyan L, Khachoyan A, Martoyan G, Kamal-Eldin A (2007) Numerical revelation of the kinetic significance of individual steps in the reaction mechanism of methyl linoleate peroxidation inhibited by alpha-tocopherol. Chem Phys Lipids 147(1):30–45

    Article  CAS  Google Scholar 

  16. Makinen M, Kamal-Eldin A, Lampi AM, Hopia A (2001) α-, γ- and δ-Tocopherols as inhibitors of isomerization and decomposition of cis, trans methyl linoleate hydroperoxides. Eur J Lipid Sci Technol 103(5):286–291

    Article  CAS  Google Scholar 

  17. Molnar I, Koswig S (1992) Investigation of γ-irradiation of α-tocopherol and its related derivatives by high performance liquid-chromatography using a rapid scanning spectrometer. J Chromatogr A 605(1):49–62

    Article  CAS  Google Scholar 

  18. Al-Malaika S, Issenhuth S (2001) The antioxidant role of vitamin E in polymers. IV. Reaction products of dl-α-tocopherol with lead dioxide and with polyolefins. Polymer 42(7):2915–2939

    Article  CAS  Google Scholar 

  19. Krol ES, Escalante DDJ, Liebler DC (2001) Mechanisms of dimer and trimer formation from ultraviolet-irradiated α-tocopherol. Lipids 36(1):49–55

    Article  CAS  Google Scholar 

  20. Baca M, Suarna C, Southwellkeely PT (1991) Separation of the α-tocopherol model compound 2,2,5,7,8-pentamethyl-6-chromanol from its oxidation products by high performance liquid chromatography. J Liq Chromatogr 14(10):1957–1966

    Article  CAS  Google Scholar 

  21. Ha YL, Csallany AS (1988) Separation of α-tocopherol and its oxidation products by high performance liquid chromatography. Lipids 23(4):359–361

    Article  CAS  Google Scholar 

  22. Suarna C, Craig DC, Cross KJ, Southwellkeely PT (1988) Oxidations of vitamin E (α-tocopherol) and its model compound 2,2,5,7,8-pentamethyl-6-hydroxychroman. A new dimer. J Org Chem 53(6):1281–1284

    Article  CAS  Google Scholar 

  23. Suarna C, Southwellkeely PT (1988) New oxidation products of α-tocopherol. Lipids 23(2):137–139

    Article  CAS  Google Scholar 

  24. Ishikawa Y (1974) Yellow reaction products from tocopherols and trimethylamine oxide. Agric Biol Chem 38(12):2545–2547

    Article  CAS  Google Scholar 

  25. Nagata Y, Miyamoto C, Matsushima Y, Matsumoto S (1999) Oxidation of d-α-tocopherol in aqueous solution. Formation of colored products. Chem Pharm Bull 47(7):923–927

    CAS  Google Scholar 

  26. Patel A, Liebner F, Netscher T, Mereiter K, Rosenau T (2007) Vitamin E chemistry. Nitration of non-alpha-tocopherols: products and mechanistic considerations. J Org Chem 72(17):6504–6512

    Article  CAS  Google Scholar 

  27. Rosenau T, Kloser E, Gille L, Mazzini F, Netscher T (2007) Vitamin E chemistry. Studies into initial oxidation intermediates of α-tocopherol: disproving the involvement of 5a-C-centered “chromanol methide” radicals. J Org Chem 72(9):3268–3281

    Article  CAS  Google Scholar 

  28. Al-Malaika S, Ashley H, Issenhuth S (1994) The antioxidant role of α-tocopherol im polymers. I. The nature of transformation products of α-tocopherol formed during melt processing of LDPE. J Polym Sci Pol Chem 32(16):3099–3113

    Article  CAS  Google Scholar 

  29. Rovellini P, Cortesi N (2002) α-Tocopherol oxidation products. Rivista Italiana delle Sostanze Grasse 79(10):335–341

    Google Scholar 

  30. Gama P, Casal S, Oliveira B, Ferreira MA (2000) Development of an HPLC/diode-array/fluorimetric detector method for monitoring tocopherols and tocotrienols in edible oils. J Liq Chromatogr Relat Technol 23(19):3011–3022

    Article  CAS  Google Scholar 

  31. Lanina SA, Toledo P, Sampels S, Kamal-Eldin A, Jastrebova JA (2007) Comparison of reversed-phase liquid chromatography–mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J Chromatogr A 1157(1–2):159–170

    Article  CAS  Google Scholar 

  32. Yamauchi R, Noro H, Shimoyamada M, Kato K (2002) Analysis of vitamin E and its oxidation products by HPLC with electrochemical detection. Lipids 37(5):515–522

    Article  CAS  Google Scholar 

  33. Al-Malaika S, Issenhuth S, Burdick D (2001) The antioxidant role of vitamin E in polymers V. Separation of stereoisomers and characterisation of other oxidation products of dl-α-tocopherol formed in polyolefins during melt processing. Polym Degrad Stabil 73(3):491–503

    Article  CAS  Google Scholar 

  34. Murkovic M, Wiltschko B, Pfannhauser W (1997) Formation of α-tocopherolquinone and α-tocopherolquinone epoxides in plant oil. Fett/Lipid 99(5):165–169

    Article  CAS  Google Scholar 

  35. Rao MKG, Perkins EG (1972) Identification and estimation of tocopherols and tocotrienols in vegetable oils using gas chromatography mass spectrometry. J Agric Food Chem 20(2):240–245

    Article  CAS  Google Scholar 

  36. Nelan DR, Robeson CD (1962) The oxidation product from α-tocopherol and potassium ferricyanide and its reaction with ascorbic and hydrochloric acids. J Am Chem Soc 84(15):2963–2965

    Article  CAS  Google Scholar 

  37. Goh SH, Hew NF, Ong ASH, Choo YM, Brumby S (1990) Tocotrienols from palm oil: electron spin resonance spectra of tocotrienoxyl radicals. J Am Oil Chem Soc 67(4):250–254

    Article  CAS  Google Scholar 

  38. Rosenau T, Ebner G, Stanger A, Perl S, Nuri L (2005) From a theoretical concept to biochemical reactions: strain-induced bond localization (SIBL) in oxidation of vitamin E. Chemistry 11(1):280–287

    Article  Google Scholar 

  39. Melchert HU, Pollok D, Pabel E, Rubach K, Stan HJ (2002) Determination of tocopherols, tocopherolquinones and tocopherolhydroquinones by gas chromatography–mass spectrometry and preseparation with lipophilic gel chromatography. J Chromatogr A 976(1–2):215–220

    Article  CAS  Google Scholar 

  40. Yoshida Y, Niki E, Noguchi N (2003) Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123(1):63–75

    Article  CAS  Google Scholar 

  41. Verleyen T, Kamal-Eldin A, Dobarganes C, Verhe R, Dewettinck K, Huyghebaert A (2001) Modeling of α-tocopherol loss and oxidation products formed during thermoxidation in triolein and tripalmitin mixtures. Lipids 36(7):719–726

    Article  CAS  Google Scholar 

  42. Liebler DC, Baker PF, Kaysen KL (1990) Oxidation of vitamin E: evidence for competing autoxidation and peroxyl radical trapping reactions of the tocopheroxyl radical. J Am Chem Soc 112(19):6995–7000

    Article  CAS  Google Scholar 

  43. Zhao Y, Lee MJ, Cheung C, Ju JH, Chen YK, Liu B, Hu LQ, Yang CS (2010) Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J Agric Food Chem 58(8):4844–4852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the Food Network project funded by the Ministry for Science and Culture of Lower Saxony (Germany) via the Research Association of Agricultural and Nutritional Science of Lower Saxony (Forschungsverbund Agrar- und Ernährungswissenschaften Niedersachsen (FAEN)). The authors wish to gratefully acknowledge Leiber GmbH (Bramsche, Germany), Greenfox Produktions GmbH (Oldendorf/Luhe, Germany), and Davos Life Science (Singapore) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Ternes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büsing, A., Ternes, W. Separation of α-tocotrienol oxidation products and eight tocochromanols by HPLC with DAD and fluorescence detection and identification of unknown peaks by DAD, PBI-EIMS, FTIR, and NMR. Anal Bioanal Chem 401, 2843–2854 (2011). https://doi.org/10.1007/s00216-011-5352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5352-1

Keywords

Navigation