Skip to main content
Log in

Neutral loss and precursor ion scan tandem mass spectrometry for study of activated benzopyrene–DNA adducts

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methodology for detection of activated benzo[a]pyrene (B[a]P)–nucleoside adducts by liquid chromatography–tandem mass spectrometry is reported. Adducts of B[a]P-dihydrodiol epoxide (B[a]PDE) with guanosine and adenosine have been detected for the first time by use of precursor ion scan and neutral loss scan. B[a]P was then activated by use of UV irradiation and some of the products obtained have been identified by taking advantage of the information obtained for B[a]PDE. Photoactivation has also been carried out in the presence of hydrogen peroxide; this resulted in a higher yield of products with increased production of BaP diones. The reactivity of these compounds toward nucleosides has been tested. The proposed method was successfully used for detection of one stable guanosine–B[a]P dione adduct.

Interactions between activated B[a]P and DNA; MS/MS detection strategies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baird WM, Hooven LA, Mahadevan B (2005) Environ Mol Mutagen 45:106–114

    Article  CAS  Google Scholar 

  2. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer Causes Control 8:444–472

    Article  CAS  Google Scholar 

  3. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Oncogene 21:7435–7451

    Article  CAS  Google Scholar 

  4. Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Environ Health Perspect 112:970–978

    Article  CAS  Google Scholar 

  5. Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS (1999) Chem Res Toxicol 12:1–18

    Article  CAS  Google Scholar 

  6. Poirier MC, Beland FA (1992) Chem Res Toxicol 5:749–757

    Article  CAS  Google Scholar 

  7. Ross JA, Nelson GB, Rabinowits JR, Stoner GD, Nesnow S, Mass M (1996) Polycycl Aromat Comp 10:267–271

    Article  CAS  Google Scholar 

  8. Rindgen D, Turesky RJ, Vouros P (1995) Chem Res Toxicol 8:1005–1013

    Article  CAS  Google Scholar 

  9. Wang JJ, Marshall WD, Frazer DG, Law B, Lewis DM (2003) Anal Biochem 322:79–88

    Article  CAS  Google Scholar 

  10. Casale GP, Singhal M, Bhattacharya S, RamaNathan R, Roberts KP, Barbacci DC, Zhao J, Jankowiak R, Gross ML, Cavalieri EL, Small GJ, Rennard SI, Mumford JL, Shen M (2001) Chem Res Toxicol 14:192–201

    Article  CAS  Google Scholar 

  11. Divi RL, Beland FA, Fu PP, Von Tungeln LS, Schoket B, Camara JE, Ghei M, Rothman N, Sinha R, Poirier MC (2002) Carcinogenesis 23:2043–2049

    Article  CAS  Google Scholar 

  12. Wang JJ, Frazer DG, Law B, Lewis DM (2003) Analyst 128:864–870

    Article  CAS  Google Scholar 

  13. Nestmann ER, Bryant DW, Carr CJ (1996) Regul Toxicol Pharmacol 24:9–18

    Article  CAS  Google Scholar 

  14. Toyooka T, Ibuki Y (2007) Environ Toxicol Pharmacol 23:256–263

    Article  CAS  Google Scholar 

  15. Yang J, Wang L, Fu PP, Yu H (2004) Mutat Res 557:99–108

    Google Scholar 

  16. Platt KL, Aderhold S, Kulpe K, Fickler M (2008) Mutat Res 650:96–103

    CAS  Google Scholar 

  17. Shemer H, Linden KG (2007) Water Res 41:853–861

    Article  CAS  Google Scholar 

  18. Kot-Wasik A, Dabrowska D, Namiesnik J (2004) J Photochem Photobiol A 168:109–115

    Article  CAS  Google Scholar 

  19. Reed M, Monske M, Lauer F, Meserole S, Born J, Burchiel S (2003) J Toxicol Environ Health A 66:1189–1205

    Article  CAS  Google Scholar 

  20. Esmans E, Broes D, Hoes I, Lemière F, Vanhoutte K (1998) J Chromatogr A 794:109–127

    Article  CAS  Google Scholar 

  21. Devanesan PD, Higginbotham S, Ariese F, Jankowiak R, Suh M, Small GJ, Cavalieri EL, Rogan EG (1996) Chem Res Toxicol 9:1113–1116

    Article  CAS  Google Scholar 

  22. Rogan EG, Devanesan PD, Ramakrishna NV, Higginbotham S, Padmavathi NS, Chapman K, Cavalieri EL, Jeong H, Jankowiak R, Small GJ (1993) Chem Res Toxicol 6:356–363

    Article  CAS  Google Scholar 

  23. Suzuki N, Prabhu P, Shibutani S (2004) In: Yan Z, Caldwell GW (eds) Optimization in drug discovery. New York, Springer

    Google Scholar 

  24. Del Carlo M, Di Marcello M, Perugini M, Ponzielli V, Sergi M, Mascini M, Compagnone D (2008) Microchim Acta 163:163–169

    Article  Google Scholar 

  25. Wang LR, Qu N, Guo LH (2008) Anal Chem 80:3910–3914

    Article  CAS  Google Scholar 

  26. Farmer PB (2004) Toxicol Lett 149:3–9

    Article  CAS  Google Scholar 

  27. Phillips DH (1983) Nature 303:468–472

    Article  CAS  Google Scholar 

  28. Chen YL, Wang CJ, Wu KY (2005) Rapid Commun Mass Spectrom 19:893–898

    Article  CAS  Google Scholar 

  29. Feng F, Wang X, Yuan H, Wang H (2009) J Chromatogr B 877:2104–2112

    Article  CAS  Google Scholar 

  30. Feng F, Yin J, Song M, Wang H (2008) J Chromatogr A 1183:119–128

    Article  CAS  Google Scholar 

  31. Wang JJ, Marshall WD, Law B, Lewis DM (2003) Int J Mass Spectrom 230:45–55

    Article  CAS  Google Scholar 

  32. Barry JP, Norwood C, Vouros P (1996) Anal Chem 68:1432–1438

    Article  CAS  Google Scholar 

  33. Branco PS, Chiarelli MP, Jackson OLJ, Beland FA (1995) J Am Soc Mass Spectrom 6:248–256

    Article  CAS  Google Scholar 

  34. Xue W, Warshawsky D (2005) Toxicol Appl Pharmacol 206:73–93

    Article  CAS  Google Scholar 

  35. Ruan Q, Kim HY, Jiang H, Penning TM, Harvey RG, Blair IA (2006) Rapid Commun Mass Spectrom 20:1369–1380

    Article  CAS  Google Scholar 

  36. Beland FA, Churchwell MI, Von Tungeln LS, Chen S, Fu PP, Culp SJ, Schoket B, Gyorffy E, Minarovits J, Poirier MC, Bowman ED, Weston A, Doerge DR (2005) Chem Res Toxicol 18:1306–1315

    Article  CAS  Google Scholar 

  37. Thompson AL, Hurtubise RJ (2007) Anal Chim Acta 584:28–36

    Article  CAS  Google Scholar 

  38. Dong S, Hwang HM, Shi X, Holloway L, Yu H (2000) Chem Res Toxicol 13:585–593

    Article  CAS  Google Scholar 

  39. Balu N, Padgett WT, Lambert GR, Swank AE, Richard AM, Nesnow S (2004) Chem Res Toxicol 17:827–838

    Article  CAS  Google Scholar 

  40. Balu N, Padgett WT, Nelson GB, Lambert GR, Ross JA, Nesnow S (2006) Anal Biochem 355:213–223

    Article  CAS  Google Scholar 

  41. Lintelmann J, Fischer K, Matuschek G (2006) J Chromatogr A 1133:241–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sergi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compagnone, D., Curini, R., D’Ascenzo, G. et al. Neutral loss and precursor ion scan tandem mass spectrometry for study of activated benzopyrene–DNA adducts. Anal Bioanal Chem 401, 1983–1991 (2011). https://doi.org/10.1007/s00216-011-5261-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5261-3

Keywords

Navigation