Skip to main content
Log in

Optimisation of stir bar sorptive extraction and in-tube derivatisation–thermal desorption–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds in environmental water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of organic pollutants in environmental water samples requires a pre-concentration step. Pre-concentration techniques such as stir bar sorptive extraction (SBSE) have gained popularity since they minimise the use of toxic organic solvents and can be considered as green analytical techniques. Similar to other pre-concentration techniques, one of the problems when SBSE is used is the matrix effect, which often occurs during the analysis of environmental water samples such as estuarine or wastewater samples. The present work studied the matrix effect during SBSE coupled to in-tube derivatisation–thermal desorption (TD)–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds, such as alkylphenols, bisphenol A, estrogens and sterols, in environmental water samples, after optimisation of the major variables affecting the determination. Variables such as the addition of methanol or an inert salt to the donor phase, the extraction temperature, the volume of the donor phase, the stirring rate and the extraction time were studied during the SBSE optimisation. In the case of the in-tube derivatisation and TD step, the volume of the derivatisation reagent (N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS)) and the cryo-focusing temperature were fixed (2 μL and −50 °C, respectively) according to a consensus between maximum signal and optimal operation conditions. Good apparent recovery values (78–124%) were obtained for most of the analytes in Milli-Q water, except for 4-tert-octylphenol (4-tOP), which showed apparent recovery values exceeding 100%. Precision (n = 4) was in the 2–27%, and method detection limits were in the low nanogrammes per litre level for most of the analytes studied. The matrix effect was studied using two different approaches. On the one hand, Milli-Q water samples were spiked with humic acids, and apparent recovery values were studied with and without correction with the corresponding deuterated analogue. On the other hand, estuarine water and wastewater samples were spiked with known concentrations of target analytes, and apparent recoveries were studied as explained above. In general, the matrix effect could be corrected with the use of deuterated analogues, except for 4-tOP and nonylphenols for which [2H4]-n-nonylphenol did not provide good corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coquery M, Morin A, Bécue A, Lepot B (2005) Trends Anal Chem 24:117–127

    Article  CAS  Google Scholar 

  2. Guigues N, Berho C, Roy S, Foucher J-C, Fouillac A-M (2007) Trends Anal Chem 26:268–273

    Article  CAS  Google Scholar 

  3. Richardson SD (2007) Anal Chem 79:4295–4324

    Article  CAS  Google Scholar 

  4. WHO/IPCS (2002) Global assessment of the state-of-science of endocrine disruptors. World Health Organization/International Program on Chemical safety. WHO/PCS/EDC/02.2. Available at http://www.who.int/emerg_site/edc/global_edc_ch5.pdf

  5. Tan BLL, Hawker DW, Müller JF, Tremblay LA, Chapman HF (2008) Water Res 42:404–412

    Article  CAS  Google Scholar 

  6. Barceló D, Petrovic M (2007) Trends Anal Chem 26:647–649

    Article  Google Scholar 

  7. Gibson R, Tyler CR, Hill EM (2005) J Chromatogr A 1066:33–40

    Article  CAS  Google Scholar 

  8. David F, Tienpont B, Sandra P (2003) LC-GC Europe 16:1–7

    Google Scholar 

  9. Bruzzoniti MC, Sarzanini C, Mentasti E (2000) J Chromatogr A 902:289–309

    Article  CAS  Google Scholar 

  10. Kot A, Zabiegala B, Namiesnik J (2000) Trends Anal Chem 19:446–459

    Article  CAS  Google Scholar 

  11. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  12. Baltussen E, David F, Sandra P, Janssen H-G, Cramers C (1999) Anal Chem 71:5193–5198

    Article  CAS  Google Scholar 

  13. Carpinteiro J, Rodríguez I, Cela R (2004) Anal Bioanal Chem 380:853–857

    Article  CAS  Google Scholar 

  14. Centineo G, Blanco González E, García Alonso JI, Sanz-Medel A (2006) J Mass Spectrom 41:77–83

    Article  CAS  Google Scholar 

  15. Mishra S, Tripathi RM, Bhalke S, Shukla VK, Puranik VD (2005) Anal Chim Acta 551:192–198

    Article  CAS  Google Scholar 

  16. León VM, Llorca-Pórcel J, Álvarez B, Cobollo MA, Muñoz S, Valor I (2006) Anal Chim Acta 558:261–266

    Article  Google Scholar 

  17. Popp P, Keil P, Montero L, Rückert M (2005) J Chromatogr A 1071:155–162

    Article  CAS  Google Scholar 

  18. Montero L, Popp P, Paschke A, Pawliszyn J (2004) J Chromatogr A 1025:17–26

    Article  CAS  Google Scholar 

  19. Baltussen E, Sandra P, David F, Cramers C (1999) J Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  20. Baltussen E, Cramers CA, Sandra PJF (2002) Anal Bioanal Chem 373:3–22

    Article  CAS  Google Scholar 

  21. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) J Sep Sci 32:813–824

    Article  CAS  Google Scholar 

  22. David F, Sandra P (2007) J Chromatogr A 1152:54–69

    Article  CAS  Google Scholar 

  23. Kawaguchi M, Ito R, Saito K, Nakazawa H (2006) J Pharm Biomed Anal 40:500–508

    Article  CAS  Google Scholar 

  24. Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM (2009) Chromatographia 69:79–94

    Article  Google Scholar 

  25. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010) J Chromatogr A 1217:2642–2666

    Article  CAS  Google Scholar 

  26. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) J Chromatogr A 1062:23–29

    Article  CAS  Google Scholar 

  27. Montero L, Conradi S, Weiss H, Popp P (2005) J Chromatogr A 1071:163–169

    Article  CAS  Google Scholar 

  28. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) Anal Chim Acta 533:57–65

    Article  CAS  Google Scholar 

  29. Nakamura S, Daishima S (2004) J Chromatogr A 1038:291–294

    Article  CAS  Google Scholar 

  30. Kawaguchi M, Inoue K, Yoshimura M, Sakui N, Okanouchi N, Ito R, Yoshimura Y, Nakazawa H (2004) J Chromatogr A 1041:19–26

    Article  CAS  Google Scholar 

  31. Stopforth A, Burger BV, Crouch AM, Sandra P (2007) J Chromatogr B 856:156–164

    Article  CAS  Google Scholar 

  32. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Izumi S-I, Makino T, Nakazawa H (2005) J Chromatogr B 820:49–57

    Article  CAS  Google Scholar 

  33. Kawaguchi M, Inoue K, Yoshimura M, Ito R, Sakui N, Okanouchi N, Nakazawa H (2004) J Chromatogr B 805:41–48

    Article  CAS  Google Scholar 

  34. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006) J Chromatogr A 1105:140–147

    Article  CAS  Google Scholar 

  35. Quintana JB, Rodil R, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodriguez D (2007) J Chromatogr A 1174:27–39

    Article  CAS  Google Scholar 

  36. Van Hoeck E, Canale F, Cordero C, Compernolle S, Bicchi C, Sandra P (2009) Anal Bioanal Chem 393:907–919

    Article  Google Scholar 

  37. Bicchi C, Schilirò T, Pignata C, Fea E, Cordero C, Canale F, Gilli G (2009) Sci Total Environ 407:1842–1851

    Article  CAS  Google Scholar 

  38. Brossa L, Marcé RM, Borrull F, Pocurull E (2005) Chromatographia 61:61–65

    Article  CAS  Google Scholar 

  39. Giordano A, Fernández-Franzón M, Ruiz MJ, Font G, Picó Y (2009) Anal Bioanal Chem 393:1733–1743

    Article  CAS  Google Scholar 

  40. Chaves AR, Silva SM, Queiroz RHC, Lanças FM, Queiroz MEC (2007) J Chromatogr B 850:295–302

    Article  CAS  Google Scholar 

  41. Rodil R, Moeder M (2008) J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  42. Almeida C, Nogueira JMF (2006) J Pharm Biomed Anal 41:1303–1311

    Article  CAS  Google Scholar 

  43. Hu Y, Zheng Y, Zhu F, Li G (2007) J Chromatogr A 1148:16–22

    Article  CAS  Google Scholar 

  44. Bourdat-Deschamps M, Daudin JJ, Barriuso E (2007) J Chromatogr A 1167:143–153

    Article  CAS  Google Scholar 

  45. Ochiai N, Sasamoto K, Takino M, Yamashita S, Daishima S, Heiden A, Hoffman A (2001) Analyst 126:1652–1657

    Article  CAS  Google Scholar 

  46. León VM, Álvarez B, Cobollo MA, Muñoz S, Valor I (2003) J Chromatogr A 999:91–101

    Article  Google Scholar 

  47. Melo LP, Nogueira AM, Lanças FM, Queiroz MEC (2009) Anal Chim Acta 633:57–64

    Article  CAS  Google Scholar 

  48. Costa Queiroz RH, Bertucci C, Malfará WR (2008) J Pharm Biomed Anal 48:428–434

    Article  Google Scholar 

  49. Liu W, Hu Y, Zhao J, Xu Y, Guan Y (2005) J Chromatogr A 1095:1–7

    Article  CAS  Google Scholar 

  50. Shareef A, Angove MJ, Wells JD (2006) J Chromatogr A 1108:121–128

    Article  CAS  Google Scholar 

  51. Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera, Fernández-Alba AR (2004) J Chromatogr A 1047:129–135

    Article  CAS  Google Scholar 

  52. Prieto A, Schrader S, Moeder M (2010) J Chromatogr A 1217:6002–6011

    Article  CAS  Google Scholar 

  53. Beck IC, Bruhn R, Gandrass J, Ruck W (2005) J Chromatogr A 1090:98–106

    Article  CAS  Google Scholar 

  54. Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ (2010) J Hazard Mater 183:701–711

    Article  CAS  Google Scholar 

  55. Viglino L, Aboulfadl K, Prévost M, Sauvé S (2008) Talanta 76:1088–1096

    Article  CAS  Google Scholar 

  56. Sandra P, Tienpont B, Vercammen J, Tredoux A, Sandra T, David F (2001) J Chromatogr A 928:117–126

    Article  CAS  Google Scholar 

  57. Benijts T, Vercammen J, Dams R, Pham Tuan H, Lambert W, Sandra P (2001) J Chromatogr B 755:137–142

    Article  CAS  Google Scholar 

  58. Phillips P, Chalmers A (2009) J Am Water Resour As 45:45–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Spanish Ministry of Science and Innovation through the CTQ2008-02775/BQU project and the University of the Basque Country through the UNESCO09/03 project. A. Prieto is grateful to the Basque Government for her post-doctoral fellowship. A. Iparraguirre is grateful to the Basque Government for her pre-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatz Zuloaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iparraguirre, A., Prieto, A., Navarro, P. et al. Optimisation of stir bar sorptive extraction and in-tube derivatisation–thermal desorption–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds in environmental water samples. Anal Bioanal Chem 401, 339–352 (2011). https://doi.org/10.1007/s00216-011-5074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5074-4

Keywords

Navigation