Skip to main content
Log in

Quantitative nuclear magnetic resonance for additives determination in an electrolytic nickel bath

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of proton nuclear magnetic resonance (1H-NMR) for the quantitation of additives in a commercial electrolytic nickel bath (Supreme Plus Brilliant, Atotech formulation) is reported. A simple and quick method is described that needs only the separation of nickel ions by precipitation with NaOH. The four additives in the bath (A-5(2X), leveler; Supreme Plus Brightener (SPB); SA-1, leveler; NPA, wetting agent; all of them are commercial names from Atotech) can be quantified, whereas no other analytical methods have been found in the literature for SA-1 and NPA. Two calibration methods have been tried: integration of NMR signals with the use of a proper internal standard and partial least squares regression applied to the characteristic NMR peaks. The multivariate method was preferred because of accuracy and precision. Multivariate limits of detection of about 4 mL L−1 A-5(2X), 0.4 mL L−1 SPB, 0.2 mL L−1 SA-1 and 0.6 mL L−1 NPA were found. The dynamic ranges are suitable to follow the concentration of additives in the bath along electrodeposition. 1H-NMR spectra provide evidence for SPB and SA-1 consumption (A-5(2X) and NPA keep unchanged along the process) and the growth of some products from SA-1 degradation can be followed. The method can, probably, be extended to other electrolytic nickel baths.

Typical NMR spectrum of a nickel electrodeposition bath along the process showing characteristic peaks of additives (A-5(2X), SPB, SA-1), NPA) in blue and by-products in red.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Winning H, Larsen FH, Bro R, Engelsen SB (2008) J Magn Reson 190:26–32

    Article  CAS  Google Scholar 

  2. Rizzo V, Pinciroli V (2005) J Pharm Biom Anal 38:851–857

    Article  CAS  Google Scholar 

  3. Dini JW (1993) Electrodeposition. The materials science of coatings and substrates. Noyes, New York, p 332

    Google Scholar 

  4. Mandich NV, Geduld H (2002) Met Finish 100:83–91

    Article  CAS  Google Scholar 

  5. Calvert JM, Binstead RD (2002) Electroplating bath control. US Patent 20020060157

  6. Baudrand DW (2007) Plat Surf Finish 94:32–36

    CAS  Google Scholar 

  7. Nord LI, Vaag P, Duus Ø (2004) Anal Chem 76:4790–4798

    Article  CAS  Google Scholar 

  8. de Peinder P, Visser T, Petrauskas DD, Salvatori F, Soulimani F, Weckhuysen BM (2009) Vib Spectroscop 51:205–212

    Article  Google Scholar 

  9. Wooten JB, Kalengamaliro NE, Alexon DE (2009) Phytochemistry 41:940–951

    Article  Google Scholar 

  10. Dybry M, Petersen M, Whitakker AK, Lambert L, Nørgaard L, Bro R, Engelsen SB (2005) Anal Chim Acta 531:209–216

    Article  Google Scholar 

  11. Blanco M, Coello J, Iturriaga H, Maspoch S, Bertrán E (1991) Fresenius J Anal Chem 340:410–414

    Article  CAS  Google Scholar 

  12. Blanco M, Coello J, Iturriaga H, Maspoch S, Serrano D (1999) Fresenius J Anal Chem 363:364–368

    Article  CAS  Google Scholar 

  13. Barriola A, García E, Ostra M, Ubide C (2008) J Electrochem Soc 155:D480–D484

    Article  CAS  Google Scholar 

  14. Vidal M, Amigo JM, Bro R, Ostra M, Ubide C (2010) Anal Methods 2:86–92

    Article  CAS  Google Scholar 

  15. Liu M, Mao X, Ye C, Huang H, Nicholson JK, Lindon JC (1998) J Magn Reson 132:125–129

    Article  CAS  Google Scholar 

  16. Haaland DM, Thomas EV (1998) Anal Chem 60:1193–1202

    Article  Google Scholar 

  17. Currie LA (1995) Pure App Chem 67:1699–1723

    Article  CAS  Google Scholar 

  18. Berregi I, del Campo G, Caracena R, Miranda JJ (2007) Talanta 72:1049–1053

    Article  CAS  Google Scholar 

  19. Tynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112

    Article  CAS  Google Scholar 

  20. Savorani F, Tomasi G, Engelsen SB (2010) J Magn Reson 202:190–202

    Article  CAS  Google Scholar 

  21. Barriola A, Miranda JJ, Ostra M, Ubide C (2010) Anal Bioanal Chem 398:1085–1094

    Article  CAS  Google Scholar 

  22. Ortiz MC, Sarabia LA, Herrero A, Sánchez MS, Sanz MB, Rueda ME, Giménez D, Meléndez ME (2003) Chemom Intell Lab Syst 69:21–33

    Article  CAS  Google Scholar 

  23. Ostra M, Ubide C, Vidal M, Zuriarrain J (2008) Analyst 133:532–539

    Article  CAS  Google Scholar 

  24. Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of Chemometrics and Qualimetrics: Part A. Elsevier, Amsterdam, pp 208–210

    Google Scholar 

Download references

Acknowledgements

Financial support from MICINN (CTQ2008—06751-C02-02/BQU) and from UPV/EHU (Project GIU07/58) is here acknowledged. M. V. acknowledges financial support from GV in the form of a scholar fellowship. The authors thank Dr. José I. Miranda (Servicio de RMN, Universidad del País Vasco) for help during the NMR measurements and Francesco Savorani (Faculty of Live Sciences, University of Copenhagen) for NMR peaks alignment by icoshifth algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ubide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostra, M., Ubide, C. & Vidal, M. Quantitative nuclear magnetic resonance for additives determination in an electrolytic nickel bath. Anal Bioanal Chem 399, 1907–1915 (2011). https://doi.org/10.1007/s00216-010-4573-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4573-z

Keywords

Navigation