Skip to main content
Log in

Using one-dimensional (1D) and two-dimensional (2D) quantitative proton (1H) nuclear magnetic resonance spectroscopy (q NMR) for the identification and quantification of taste compounds in raw onion (Allium cepa L.) bulbs and in aqueous solutions where onion tissues are soaked

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Solutions obtained by soaking onion (Allium cepa L.) bulbs samples in water are frequently consumed, either directly or as part of dishes, both at home or in the food industry. However, little information is available regarding the extracted metabolites and the extraction mechanisms. In this article, the composition of raw onion extracts and of aqueous solutions where raw onion tissues were soaked was investigated directly by quantitative proton nuclear magnetic resonance spectroscopy (q 1H NMR). The assignment of NMR signals was performed, with less than 3% (in area) of unidentified peaks. Analyses of one-dimensional 1H NMR spectra with additional two-dimensional NMR studies showed 20 regions of interest where 3 saccharides, 17 amino acids, and 5 organic acids were detected and quantified. Resonance assignment with chemical shift was done for each saccharide, as well as for each amino acid and organic acid, with additional work on spin–spin coupling pattern and on observed and not observed correlations from correlation spectroscopy studies. Quantification of saccharides was performed and qualified by works on peak decomposition algorithms. Complementary studies by high-performance liquid chromatography, mass spectroscopy and tandem mass spectroscopy, and thin layer chromatography and preparative layer chromatography were carried out in order to validate the NMR results on identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taylor AJ (1996) Volatile flavor release from food during eating. Crit Rev Food Sci Nutr 36(8):765–784

    Article  CAS  Google Scholar 

  2. Faurion A, Lardier T, Guinard JX, Naudin B (2006) Human taste detection thresholds, olfaction and taste IX. Ann NY Acad Sci 510:276–279

    Article  Google Scholar 

  3. Kaack K, Christensen LP, Hansen SL, Grevsen K (2004) Non-structural carbohydrates in processed soft fried onion (Allium cepa L.). Eur Food Res Technol 218:372–379

    Article  CAS  Google Scholar 

  4. Jaime L, Molla E, Fernandez A, Martin Cabrejas MA, Lopez Andreu FJ, Esteban RM (2002) Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J Agric Food Chem 50:122–128

    Article  CAS  Google Scholar 

  5. Espinosa-Martos I, Rico E, Rupèrez P (2006) Note. Low molecular weight carbohydrates in foods usually consumed in Spain. Food Sci Technol Int 12(2):171–175

    Article  CAS  Google Scholar 

  6. O’Donoghue EM, Omerfield SD, Bendall M, Hedderly D, Eason J, Sims I (2004) Evaluation of carbohydrates in Pukekohe longkeeper and Grano cultivars of Allium cepa L. J Agric Food Chem 52:5383–5390

    Article  Google Scholar 

  7. Jaime L, Martin-Cabrejas MA, Molla E, Lopez-Andreu FJ, Waldron KW, Esteban RM (2000) Study of total fructan and fructooligosaccharide content in different onion tissues. J Sci Food Agric 81:177–182

    Article  Google Scholar 

  8. Jaime L, Martin-Cabrejas MA, Molla E, Lopez-Andreu FJ, Esteban RM (2001) Effect of storage on fructan and fructooligosaccharide of onion (Allium cepa L.). J Agric Food Chem 49:982–988

    Article  CAS  Google Scholar 

  9. Gorin N (1979) Enzymatic and high-pressure liquid chromatographic estimation of glucose, fructose, and sucrose in powders from stored onions. J Agric Food Chem 27(1):195–197

    Article  CAS  Google Scholar 

  10. Ng A, Smith AC, Waldron KW (1998) Effect of tissue type and variety on cell wall chemistry of onion (Allium cepa L.). Food Chem 63(1):17–24

    Article  CAS  Google Scholar 

  11. Rabinowitch HD, Brewster JL (1990) Onions and allied crops, Vol. 1, Botany, physiology, and genetics

  12. Cazor A, Deborde C, Moing A, Rolin D, This H (2006) Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J Agric Food Chem 54:4681–4686

    Article  CAS  Google Scholar 

  13. Lachman J, Orsák M, Pivec V (1999) Flavonoid antioxidants and ascorbic acid in onion (Allium cepa L.). Hort Sci Prague-Zahradnictví 26:125–134

    Google Scholar 

  14. Lachman J, Proněk D, Hejtmánková A, Dudjak J, Pivec V, Faitová K (2003) Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hort Sci Prague-Zahradnictví 30:142–147

    Google Scholar 

  15. Shiomi N, Benkeblia N, Onodera S (2005) The metabolism of the fructooligosaccharides in onion bulbs: a comprehensive review. J Appl Glycosci 52:121–127

    CAS  Google Scholar 

  16. Shiomi N, Onodera S, Sakai H (1997) Fructo-oligosaccharide content and fructosyltransferase activity during growth of onion bulbs. New Phytol 136:105–113

    CAS  Google Scholar 

  17. Benkeblia N, Onodera S, Shiomi N (2005) Variation in 1-fructo-exohydrolase (1-FEH) and 1-kestose-hydrolysing (1-KH) activities and fructo-oligosaccharide (FOS) status in onion bulbs. Influence of temperature and storage time. J Sci Food Agric 85:227–234

    Article  CAS  Google Scholar 

  18. Benkeblia N, Takahashi N, Ueno K, Onodera S, Shiomi N (2005) Tetra- and penta-fructooligosaccharide (FOS) isomers assessment in onion bulb tissues: effect of temperature and storage time. Tetrahedron Asymmetr 16:33–37

    Article  CAS  Google Scholar 

  19. Rabinowitch HD, Brewster JL (1990) Onions and allied crops vol. 3, biochemistry, food science, and minor crops.

  20. Selby C, Galpin IJ, Collin HA (1979) Comparison of the onion plant (Allium cepa) and onion tissue culture. New Phytol 83:351–359

    Article  CAS  Google Scholar 

  21. Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000) Application of high-performance chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    Article  CAS  Google Scholar 

  22. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  CAS  Google Scholar 

  23. Roessner U, Willmitzer L, Fernie AR (2002) Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Rep 21:189–196

    Article  CAS  Google Scholar 

  24. Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    CAS  Google Scholar 

  25. Pereira GE, Gaudillere JP, Van Leeuwen C, Hilbert G, Maucourt M, Deborde C, Moing A, Rolin D (2005) 1H NMR and chemometrics to characterize mature grape berries in four wine-growing areas in Bordeaux, France. J Agric Food Chem 53:6382–6389

    Article  CAS  Google Scholar 

  26. Schraml J, Blechta V, Sýkora J, Soukupová L, Cuřínová P, Proněk D, Lachman J (2005) Identification of polyphenols from plant materials through their silylation and 29Si NMR spectroscopy—line assignment through 29Si–13C spin–spin couplings. Magn Reson Chem 43:829–834

    Article  CAS  Google Scholar 

  27. Gil AM, Duarte IF, Delgadillo I, Colquhoun IJ, Casuscelli F, Humpfer E, Spraul M (2000) Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy. J Agric Food Chem 48:1524–1536

    Article  CAS  Google Scholar 

  28. Sobolev AP, Brosio E, Gianferri R, Segre AL (2005) Metabolic profile of lettuce leaves by high-field NMR Spectra. Magn Reson Chem 43:625–638

    Article  CAS  Google Scholar 

  29. Le Gall G, Colquhoun IJ, Davies AL, Collins GJ, Verhoeyen ME (2003) Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem 51:2447–2456

    Article  Google Scholar 

  30. Sobolev AP, Segre AL, Lamanna R (2003) Proton high-field NMR study of tomato juice. Magn Reson Chem 41:237–245

    Article  CAS  Google Scholar 

  31. Duarte IF, Barros A, Belton PS, Righelato R, Spraul M, Humpfer E, Gil AM (2002) High-resolution nuclear resonance magnetic spectroscopy and multivariate analysis for the characterization of beer. J Agric Food Chem 50:2475–2481

    Article  CAS  Google Scholar 

  32. Kosir IJ, Kidric J (2001) Identification of amino acids in wines by one- and two-dimensional nuclear magnetic resonance spectroscopy. J Agric Food Chem 49:50–56

    Article  CAS  Google Scholar 

  33. Charles C (2009) La cuisine expliquée, éditions BPI, Paris

  34. Havey MJ, Galmarini CR, Gökce AF, Henson C (2004) QTL affecting soluble carbohydrate concentrations in stored onion bulbs and their association with flavor and health-enhancing attributes. Genome 47:463–468

    Article  CAS  Google Scholar 

  35. Le Barc’H N, Grossel JM, Looten P, Mathlouthi M (2001) Kinetic study of the mutarotation of D-glucose in concentrated aqueous solution by gas-liquid chromatography. Food Chem 74:119–124

    Article  Google Scholar 

  36. Moing A, Maucourt M, Renaud C, Gaudillère G, Brouquisse R, Lebouteiller B, Gousset-Dupont A, Vidal J, Granot D, Denoyes-Rothan B, Lerceteau-Köhler E, Rolin D (2004) Quantitative metabolic profiling through one-dimensional 1H NMR analyses: application to plant genetics and functional genomics. Funct Plant Biol 31:889–902

    Article  CAS  Google Scholar 

  37. Fulushi E, Onodera S, Yamamori A, Shiomi N, Kawabata J (2000) NMR analysis of tri- and tetrasaccharides from asparagus. Magn Reson Chem 38:1005–1011

    Article  Google Scholar 

  38. Munasinghe JP, Colebrook LD, Attard JJ, Carpenter TA, Hall LD (1997) Estimation of the spin-lattice relaxation time constants of low molecular weight solutes in dilute complex aqueous solutions: application to urinary metabolites. Magn Reson Chem 36(2):116–123

    Article  Google Scholar 

  39. Kaufman SL, Dorman FD (2008) Sucrose clusters exhibiting a magic number in dilute aqueous solutions. Langmuir 24(18):9979–9982

    Article  CAS  Google Scholar 

  40. Hoffman E, Stroobant V (2005) Spectrométrie de masse

  41. Reiffová K, Podolonovièova J, Onofrejova L, Preisler J, Nemcova R (2007) Thin-layer chromatography and matrix-assisted laser desorption/ionization mass spectrometric analysis of oligosaccharides in biological samples. J Planar Chrom 20(1):19–25

    Article  Google Scholar 

  42. Kocourek J, Ticha M, Koftit J (1966) The use of diphenylamine-aniline-phosphoric acid reagent in the detection and determination of monosaccharides and their derivatives on paper chromatograms. J Chromatogr 24:117–124

    Article  CAS  Google Scholar 

  43. Baron DN, Economidis J (1963) Thin-layer chromatography for amino-acids and sugars. J Clin Pathol 16:484–486

    Article  CAS  Google Scholar 

  44. Dyson N (1990) Chromatographic integration methods

  45. Chesler SN, Cram SP (1971) Effect of peak sensing and random noise on the precision and accuracy of statistical moment analyses from digital chromatographic data. Anal Chem 43(14):1922–1933

    Article  CAS  Google Scholar 

  46. Valverde J, This H (2007) Quantitative determination of photosynthetic pigments in green beans using thin-layer chromatography and a flatbed scanner as densitometer. J Chem Educ 84(9):1505–1507

    Article  CAS  Google Scholar 

  47. Davis F, Terry LA, Chope GA, Faul CFJ (2007) Effect of extraction procedure on measured sugar concentrations in onion (Allium cepa L.) bulbs. J Agric Food Chem 55(11):4299–4306

    Article  CAS  Google Scholar 

  48. Mandelbaum A (1983) Mass Spectrom Rev 2:223–284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé This.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tardieu, A., De Man, W. & This, H. Using one-dimensional (1D) and two-dimensional (2D) quantitative proton (1H) nuclear magnetic resonance spectroscopy (q NMR) for the identification and quantification of taste compounds in raw onion (Allium cepa L.) bulbs and in aqueous solutions where onion tissues are soaked. Anal Bioanal Chem 398, 3139–3153 (2010). https://doi.org/10.1007/s00216-010-4255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4255-x

Keywords

Navigation