Skip to main content
Log in

Physicochemical characterisation of different welding aerosols

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of an 11-stage cascade impactor. The size distribution of the primary particles of agglomerates, chemical composition and morphology of the particles were examined by TEM. There were significant differences in the particle number size distributions of the different welding aerosols according to the SMPS determinations. The particle mass size distributions determined gravimetrically were, however, not really different. The dominant range with respect to mass was between 0.1 and 1 μm, regardless of the welding technique. Most of the primary particles in all different welding aerosols had diameters between 5 and 40 nm. All types of primary particles had a tendency to form chainlike agglomerates. A clear size dependence of the particle chemical composition was encountered in the case of manual metal arc welding aerosol. Small particles with diameters below 50 nm were mostly metal oxides in contrast to larger particles which also contained more volatile elements (e.g. potassium, fluorine, sodium, sulphur).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  Google Scholar 

  2. Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 50:1565–1618

    CAS  Google Scholar 

  3. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  4. Antonini JM (2003) Health effects of welding. Crit Rev Toxicol 33:61–103

    Article  CAS  Google Scholar 

  5. McNeilly JD, Heal MR, Beverland IJ, Howe A, Gibson MD, Hibbs LR, MacNee W, Donaldson K (2004) Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol Appl Pharmacol 196:95–107

    Article  CAS  Google Scholar 

  6. Naslund PE, Andeasson S, Bergstom R, Smith L, Risberg B (1990) Effects of exposure to welding fume—an experimental study in sheep. Eur Respir J 39:722–726

    Google Scholar 

  7. Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Effects of soluble and insoluble fractions of a stainless steel manual metal arc welding fume on free radical production and lung injury and inflammation. Toxicol Sci 75:181–191

    Article  CAS  Google Scholar 

  8. Li GJJ, Zhang LL, Lu L, Wu P, Zheng W (2004) Occupational exposure to welding fume among welders: alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. J Occup Environ Med 46:241–248

    Article  CAS  Google Scholar 

  9. Smith KR, Veranth JM, Hu AA, Lighty JS, Aust AE (2000) Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal. Chem Res Toxicol 13:118–125

    Article  CAS  Google Scholar 

  10. Minni E, Gustafsson TE, Koponen M, Kalliomaki P-L (1984) A study of the chemical-structure of particles in welding fumes of mild and stainless steel. J Aerosol Sci 15:57–68

    Article  CAS  Google Scholar 

  11. Konarski P, Iwanejko I, Mierzejewska A (2003) SIMS depth profiling of working environment nanoparticles. Appl Surf Sci 203–204:757–761

    Article  Google Scholar 

  12. Konarski P, Iwanejko I, Cwil M (2003) Core–shell morphology of welding fume micro- and nanoparticles. Vacuum 70:385–389

    Article  CAS  Google Scholar 

  13. Berlinger B, Náray M, Sajó I, Záray G (2009) Critical evaluation of sequential leaching procedures for the determination of Ni and Mn Species in welding fumes. Ann Occup Hyg 53:333–340

    Article  CAS  Google Scholar 

  14. Jenkins NT, Eagar CN (2005) Chemical analysis of welding fume particles—airborne particle size is the most important factor in determining the accuracy of a method for chemical analysis. Weld J 84:87s–93s

    Google Scholar 

  15. Worobiec A, Stefaniak EA, Kiro S, Oprya M, Bekshaev A, Spolnik Z, Potgieter-Vermaak SS, Ennan A, Van Grieken R (2007) Comprehensive microanalytical study of welding aerosols with X-ray and Raman based methods. X-Ray Spectrom 36:328–335

    Article  CAS  Google Scholar 

  16. Jenkins NT, Pierce WMG, Eagar TW (2005) Particle size distribution of gas metal and flux cored arc welding fumes. Weld J 84:156s–163s

    Google Scholar 

  17. Grekula JA, Ristolainen E, Tanninen VP, Hyvarinen K, Kalliomaki PL (1986) Surface and bulk chemical-analysis on metal aerosols generated by manual metal arc welding of stainless steel. J Aerosol Sci 17:1

    Article  CAS  Google Scholar 

  18. Kalliomaki PL, Grekula JA, Hagber J, Sivonen S (1987) Analytical electron-microscopy of welding fumes. J Aerosol Sci 18:781–784

    Article  CAS  Google Scholar 

  19. Narayana DSS, Sundarrarajan AR, Manjula B, Kumari SCV, Subramanian V (1995) Chemical characteristics of stainless steel welding fumes. J Aerosol Sci 26:S531–S532

    Article  Google Scholar 

  20. Karlsen JT, Farrants G, Torgrimsen T, Reith A (1992) Chemical composition and morphology of welding fume particles and grinding dusts. Am Ind Hyg Assoc J 53:290–297

    CAS  Google Scholar 

  21. Zimmer AT, Biswas P (2001) Characterization of the aerosols resulting from arc welding processes. J Aerosol Sci 32:993–1008

    Article  CAS  Google Scholar 

  22. Carpenter KR, Monaghan BJ, Norrish J (2008) Influence of the shielding gas on fume size morphology and particle composition for gas metal arc welding. ISIJ Int 48:1570–1576

    Article  CAS  Google Scholar 

  23. Sowards JW, Ramirez AJ, Lippold JC, Dickinson DW (2008) Characterization procedure for the analysis of arc welding fume. Weld J 87:76s–83s

    Google Scholar 

  24. Hovde CA, Raynor PC (2007) Effects of voltage and wire feed speed on welding fume characteristics. J Occup Environ Hyg 4:903–912

    Article  CAS  Google Scholar 

  25. Stokes DJ (2008) Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Wiley, Chichester, 221 pp

    Book  Google Scholar 

  26. Lockey JE, Schenker MB, Howden DG, Desmeules MJA, Saracci R, Sprince NL, Herber PI (1988) Current issues in occupational lung-disease. Am Rev Respir Dis 138:1047–1050

    CAS  Google Scholar 

  27. Vincent JH (1999) Particle size-selective sampling for particulate air contaminats. ACGIH, Cincinnati

    Google Scholar 

  28. Pauluhn J (2009) Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci 109:152–167

    Article  CAS  Google Scholar 

  29. Berlinger B, Ellingsen DG, Náray M, Záray G, Thomassen Y (2008) A study of the bio-accessibility of welding fumes. J Environ Monit 10:1448–1453

    Article  CAS  Google Scholar 

  30. Inerle-Hof M, Weinbruch S, Ebert M, Thomassen Y (2007) The hygroscopic behaviour of individual aerosol particles in nickel refineries as investigated by environmental scanning electron microscopy. J Environ Monit 9:301–306

    Article  CAS  Google Scholar 

  31. Weinbruch S, Benker N, Koch W, Ebert M, Drabløs PA, Skaugset NP, Ellingsen DG, Thomassen Y (2010) Hygroscopic properties of the workroom aerosol in aluminium smelter potrooms: a case for transport of HF and SO2 into the lower airways. J Environ Monit 12:448–454

    Article  CAS  Google Scholar 

  32. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126

    Article  CAS  Google Scholar 

  33. Green HL, Lane WR (1964) Particulate clouds: dusts, smokes and mists. SPON, London

    Google Scholar 

  34. Nicolson MM (1955) Surface tension in ionic crystals. Proc R Soc A 228:490–510

    Article  CAS  Google Scholar 

  35. Yim S, Calvert G, Chen I-H (2009) Determination of surface tension of solids. www.duracoinc.com/images/surface_energy_chart.jpg

  36. Petrie EM (2006) “Chapter 2: Theories of adhesion”, Handbook of adhesives and sealants, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  37. Petrov GL, Tumarev AS (1977) Theory of welding processes. Wysshaya Shkola, Moscow

    Google Scholar 

  38. Jenkins NT, Mendez PF, Eagar TW (2005) Effect of arc welding electrode temperature on vapor and fume composition. Proceedings of the 7th International Conference on Trends in Welding Research, ASM, Materials Park, OH, pp 491–496

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Berlinger.

Additional information

Published in the special issue Speciation Analysis in Healthcare with Guest Editor Heidi Goenaga Infante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlinger, B., Benker, N., Weinbruch, S. et al. Physicochemical characterisation of different welding aerosols. Anal Bioanal Chem 399, 1773–1780 (2011). https://doi.org/10.1007/s00216-010-4185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4185-7

Keywords

Navigation