Skip to main content
Log in

Development and validation of a liquid chromatography–tandem mass spectrometry method for simultaneous quantification of p-aminohippuric acid and inulin in rat plasma for renal function study

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The first liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous quantification of p-aminohippuric acid and inulin, both typical biomarkers of kidney function. 5-(Hydroxymethyl)furfural, generated from inulin by acid and heat preparation, was used as an inulin substitute for the quantification. Acetaminophen was used as the internal standard. Solid-phase extraction was carried out with 5% methanol as the washing solution to optimize the retention of the analytes and to avoid obstruction of the orifice plate of the mass spectrometer caused by any unreacted inulin residue remaining from the sample preparation process. Chromatography separation was performed on a Symmetry C18 column and a mobile phase composed of 2 mM ammonium formate and 0.1% formic acid in water (solvent A) and 2 mM ammonium formate and 0.1% formic acid in acetonitrile (solvent B) (30:70, v/v). Detection was performed with a triple-quadrupole tandem mass spectrometer using positive ion mode electrospray ionization in the multiple reaction monitoring mode. The selected transitions were m/z 195.2 → 120.2, 127.1 → 109.1, and 152.1 → 110.0 for p-aminohippuric acid, inulin [measured as 5-(hydroxymethyl)furfural], and acetaminophen, respectively. The linearity ranged from 10 to 140 μg/mL and from 100 to 1,400 μg/mL for p-aminohippurric acid and inulin (r > 0.99), respectively. The precisions and accuracies were all within 12 and 11% for the lower limit of quantification and quality control samples, respectively. This application was proven to be reliable and accurate and was successfully applied to a renal function study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baccard N, Hoizey G, Frances C, Lamiable D, Trenque T, Millart H (1999) Analyst 124:833–836

    Article  CAS  Google Scholar 

  2. Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM (1972) N Engl J Med 287:1109–1114

    Article  CAS  Google Scholar 

  3. Pastore A, Bernardini S, Dello Strologo L, Rizzoni G, Cortese C, Federici G (2001) J Chromatogr B Biomed Sci Appl 751:187–191

    Article  CAS  Google Scholar 

  4. Decosterd LA, Karagiannis A, Roulet JM, Belaz N, Appenzeller M, Buclin T, Vogel P, Biollaz J (1997) J Chromatogr B Biomed Sci Appl 703:25–36

    Article  CAS  Google Scholar 

  5. Narins RG, Krishna GG, Riley LJ (1992) Assessment of renal function: characteristics of the functional and organic forms of acute renal failure. Raven, New York

    Google Scholar 

  6. Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Kidney Int 28:830–838

    Article  CAS  Google Scholar 

  7. Rolin HA 3rd, Hall PM, Wei R (1984) Am J Kidney Dis 4:48–54

    Google Scholar 

  8. Price M (1972) J Urol 107:339–344

    CAS  Google Scholar 

  9. Masereeuw R, Moons MM, Smits P, Russel FG (1996) Br J Pharmacol 119:57–64

    CAS  Google Scholar 

  10. Mak RH, Al Dahhan J, Azzopardi D, Bosque M, Chantler C, Haycock GB (1983) Kidney Int 23:410–413

    Article  CAS  Google Scholar 

  11. Marsilio R, Naturale M, Manghi P, Montini G, Murer L, Ros M, Bisogno G, Andretta B, Dussini N, Giordano G, Zacchello G, Dall’Amico R (2000) J Chromatogr B Biomed Sci Appl 744:241–247

    Article  CAS  Google Scholar 

  12. Takahashi N, Boysen G, Li F, Li Y, Swenberg JA (2007) Kidney Int 71:266–271

    Article  CAS  Google Scholar 

  13. Walser M, Davidson DG, Orloff J (1955) J Clin Invest 34:1520–1523

    Article  CAS  Google Scholar 

  14. Heyrovsky A (1956) Clin Chim Acta 1:470–474

    Article  CAS  Google Scholar 

  15. Fjeldbo W, Stamey TA (1968) J Lab Clin Med 72:353–358

    CAS  Google Scholar 

  16. Pearson RM (1979) Br J Clin Pharmacol 7:129–138

    CAS  Google Scholar 

  17. Boschi S, Marchesini B (1981) J Chromatogr 224:139–143

    Article  CAS  Google Scholar 

  18. Agarwal R (1998) J Chromatogr B Biomed Sci Appl 705:3–9

    Article  CAS  Google Scholar 

  19. Gabel RA, Ranaei RA, Kivlighn SD (1996) J Pharmacol Toxicol Methods 36:189–197

    Article  CAS  Google Scholar 

  20. Prueksaritanont T, Chen ML, Chiou WL (1984) J Chromatogr 306:89–97

    Article  CAS  Google Scholar 

  21. Jenny PD, Weber A, Smith AL (1989) J Chromatogr 490:213–218

    Article  CAS  Google Scholar 

  22. Song DJ, Hsu KY (1996) J Chromatogr B Biomed Appl 677:69–75

    Article  Google Scholar 

  23. Dowling TC, Frye RF, Zemaitis MA (1998) J Chromatogr B Biomed Sci Appl 716:305–313

    Article  CAS  Google Scholar 

  24. Ruo TI, Wang Z, Dordal MS, Atkinson AJJ (1991) Clin Chim Acta 204:217–222

    Article  CAS  Google Scholar 

  25. Dall’Amico R, Montini G, Pisanello L, Piovesan G, Bottaro S, Cracco AT, Zacchello G, Zacchello F (1995) J Chromatogr B Biomed Appl 672:155–159

    Article  Google Scholar 

  26. U.S. Food and Drug Administration, Guidance for Industry, Bioanalytical methods validation (2001). Published by: U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) May 2001 BP http://www.fda.gov/cder/guidance/index.htm

  27. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  28. Fischer PA, Bogoliuk CB, Ramirez AJ, Sanchez RA, Masnatta LD (2000) Kidney Int 58:1336–1341

    Article  CAS  Google Scholar 

  29. Schnurr E, Lahme W, Küppers H (1980) Nephrology 13:26–29

    CAS  Google Scholar 

  30. Michail K, Juan H, Maier A, Matzi V, Greilberger J, Wintersteiger R (2007) Anal Chim Acta 581:287–297

    Article  CAS  Google Scholar 

  31. Teixido E, Moyano E, Santos FJ, Galceran MT (2008) J Chromatogr A 1185:102–108

    Article  CAS  Google Scholar 

  32. Schneider R, Sauvant C, Betz B, Otremba M, Fischer D, Holzinger H, Wanner C, Galle J, Gekle M (2007) Am J Physiol Renal Physiol 292:F1599–F1605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a partial grant no. 98-70 from Cheng Hsin General Hospital. The authors are grateful to Hsien-Yuan Fan for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Heng Pao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic supplementary material (PDF 2800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Kuo, CW. & Pao, LH. Development and validation of a liquid chromatography–tandem mass spectrometry method for simultaneous quantification of p-aminohippuric acid and inulin in rat plasma for renal function study. Anal Bioanal Chem 398, 857–865 (2010). https://doi.org/10.1007/s00216-010-3957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3957-4

Keywords

Navigation