Skip to main content

Advertisement

Log in

Use of the dried blood spot sampling process coupled with fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry: application to fluoxetine, norfluoxetine, reboxetine, and paroxetine analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 μL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 °C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the “Société Française des Sciences et des Techniques Pharmaceutiques” (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL−1 for fluoxetine and norfluoxetine and 20 to 500 ng mL−1 for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL−1 for all the analytes. The stability of DBS was also evaluated at −20 °C, 4 °C, 25 °C, and 40 °C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive—derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kent JM (2000) Lancet 355:911–918

    Article  CAS  Google Scholar 

  2. Wille SMR, Maudens KE, Van Peteghem CH, Lambert WEE (2005) J Chromatogr A 1098:19–29

    Article  CAS  Google Scholar 

  3. Azaz-Lishits T, Hershko A, Ben-Chetrit E (2002) Pharmacopsychiatry 35:112–115

    Article  Google Scholar 

  4. Adson DE, Erickson-Birkedahl S, Kotlyar M (2001) Ann Pharmacother 35:1375–1377

    Article  CAS  Google Scholar 

  5. Kelly CA, Laing WJ, Strachan FE, Good AM, Bateman DN (2004) J Toxicol Clin Toxicol 42:67–71

    Article  CAS  Google Scholar 

  6. Vaswani M, Linda FK, Ramesh S (2003) Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    Article  CAS  Google Scholar 

  7. Mandrioli R, Forti GC, Raggi MA (2006) Curr Drug Metab 7:127–133

    Article  CAS  Google Scholar 

  8. ter Heine R, Rosing H, van Gorp ECM, Mulder JW, van der Steeg WA, Beijnen JH, Huitema ADR (2008) J Chromatogr B 867:205–212

    Article  Google Scholar 

  9. Damen CWN, Rosing H, Schellens JHM, Beijnen JH (2009) Anal Bioanal Chem 394:1171–1182

    Article  CAS  Google Scholar 

  10. Boy RG, Henseler J, Mattern R, Skopp G (2008) Ther Drug Monit 30:733–739

    Article  Google Scholar 

  11. Zytkovicz TH, Fitzgerlad EF, Marsden D, Larson CA, Shih VE, Johnson DM, Strauss AW, Comeau AM, Eaton RB, Grady GF (2001) Clin Chem 47:1945–1955

    CAS  Google Scholar 

  12. Mcdade TW, Williams S, Snodgrass JJ (2007) Demography 44:899–925

    Article  Google Scholar 

  13. Mei JV, Alexander JR, Adam BW, Hannon WH (2001) J Nutr 131:1631–1636

    Google Scholar 

  14. Cheung CY, van der Heijden J, Hoogtanders K, Christiaans M, Liu YL, Chan YH, Choi KS, van de Plas A, Shek CC, Chau KF, Li CS, van Hooff J, Stolk L (2008) Transpl Int 21:140–145

    CAS  Google Scholar 

  15. Edelbroek PM, van der Heijden J, Stlok LML (2009) Ther Drug Monit 31:327–336

    Article  Google Scholar 

  16. Barfield M, Spooner N, Lad R, Parry S, Fowles S (2008) J Chromatogr B 870:32–37

    Article  CAS  Google Scholar 

  17. Blessborn D, Römsing S, Annerberg A, Sundquist D, Björkman A, Lindegardh N, Bergqvist Y (2007) J Pharm Biomed Anal 45:282–287

    Article  CAS  Google Scholar 

  18. Mwaba P, Cassol S, Pilon R, Chintu C, Janes M, Nunn A, Zumla A (2003) Lancet 362:1459–1460

    Article  CAS  Google Scholar 

  19. Koal T, Burhenne H, Römling R, Svoboda M, Resch K, Kaever V (2005) Rapid Commun Mass Spectrom 19:2995–3001

    Article  CAS  Google Scholar 

  20. Guidelines for the shipment of dried blood spot specimens (1995) Center for Diseases Control and Prevention, Atlanta, GA, USA; http://www.cdc.gov/od/ohs/biosfty/driblood.htm. Accessed 20 December 2009

  21. Lejeune D, Souletie I, Houzé S, Le Bricon T, Le bras J, Gourmel B, Houzé P (2007) J Pharm Biomed Anal 43:1106–1115

    Article  CAS  Google Scholar 

  22. Ntale M, Mahindi M, Ogwal-Okeng JW, Gustafsson LL, Beck O (2007) J Chromatogr B 859:137–140

    Article  CAS  Google Scholar 

  23. la Marca G, Malvagia S, Filippi L, Fiorini P, Innocenti M, Luceri F, Pieraccini G, Moneti G, Francese S, Dani FR, Guerrini R (2008) J Pharm Biomed Anal 48:1392–1396

    Article  Google Scholar 

  24. Coombes EJ, Gamlen TR, Batstone GF, Leigh PN (1984) Ann Clin Biochem 21(Pt 6):519–522

    CAS  Google Scholar 

  25. AbuRuz S, Millership J, McElnay J (2006) J Chromatogr B 832:202–207

    Article  CAS  Google Scholar 

  26. Fujimoto T, Tsuda Y, Tawa R, Hirose S (1989) Clin Chem 35:867–869

    CAS  Google Scholar 

  27. Allanson AL, Cotton MM, Tettey JNA, Boyter AC (2007) J Pharm Biomed Anal 44:963–969

    Article  CAS  Google Scholar 

  28. van der Heijden J, de Beer Y, Hoogtanders K, Christiaans M, de Jong GJ, Neef C, Stolk L (2009) J Pharm Biomed Anal 50:664–670

    Article  Google Scholar 

  29. Saint-Marcoux F, Sauvage FL, Marquet P (2007) Anal Bioanal Chem 388:1327–1349

    Article  CAS  Google Scholar 

  30. Mauriala T, Chauret N, Oballa R, Nicoll-Griffith DA, Bateman KP (2005) Rapid Commun Mass Spectrom 19:1984–1992

    Article  CAS  Google Scholar 

  31. Wille SMR, Van Hee P, Neels HM, Van Peteghem CH, Lambert WE (2007) J Chromatogr A 1176:236–245

    Article  CAS  Google Scholar 

  32. Thomas A, Widmer C, Hopfgartner G, Staub C (2007) J Pharm Biomed Anal 45:495–503

    Article  CAS  Google Scholar 

  33. Maurer HH (2002) Ther Drug Monit 24:247–254

    Article  CAS  Google Scholar 

  34. Gunnar T, Ariniemi K, Lillsunde P (2006) J Mass Spectrom 41:741–754

    Article  CAS  Google Scholar 

  35. Cirimele V, Kintz P, Ludes B (1997) J Chromatogr B 700:119–129

    Article  CAS  Google Scholar 

  36. Kintz P, Tracqui A, Mangin P (1996) J Forensic Sci 41:851–854

    CAS  Google Scholar 

  37. Kuhlman JJ Jr, Magluilo J Jr, Cone E, Levine B (1996) J Anal Toxicol 20:229–235

    CAS  Google Scholar 

  38. Watson DG, Su Q, Midgley JM, Doyle E, Morton NS (1995) J Pharm Biomed Anal 13:27–32

    Article  CAS  Google Scholar 

  39. Wilkins D, Haughey H, Cone E, Huestis M, Foltz R, Rollins D (1995) J Anal Toxicol 19:483–491

    CAS  Google Scholar 

  40. Boulanger B, Chiap P, Dewé W, Crommen J, Hubert P (2003) J Pharm Biomed Anal 32:753–765

    Article  CAS  Google Scholar 

  41. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  42. Qu Y, Aluisio L, Lord B, Boggs J, Hoey K, Mazur C, Lovenberg T (2009) Pharmacol Biochem Behav 92:469–473

    Article  CAS  Google Scholar 

  43. Vlase L, Imre S, Leucuta S (2005) Talanta 66:659–663

    Article  CAS  Google Scholar 

  44. Hoogtanders K, van der Heijden J, Christiaans M, Edelbroek P, van Hooff JP, Stolk LML (2007) J Pharm Biomed Anal 44:658–664

    Article  CAS  Google Scholar 

  45. Kulik W, van Lenthe H, Stet FS, Houtkooper RH, Kemp H, Stone JE, Steward CG, Wanders RJ, Vaz FM (2008) Clin Chem 54:371–378

    Article  CAS  Google Scholar 

  46. Cramers CA, Leclercq PA (1999) J Chromatogr A 842:3–13

    Article  CAS  Google Scholar 

  47. Mastovska K, Lehotay SJ (2003) J Chromatogr A 1000:153–180

    Article  CAS  Google Scholar 

  48. Harrison AG (1986) Chemical ionization mass spectrometry. CRC Press, Boca Raton, Florida

    Google Scholar 

  49. Shah VP, Midha K, Dighe S, McGilveray LJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD, Pittman KA, Spector S (1992) J Pharm Sci 81:309–312

    Article  Google Scholar 

  50. Hubert P, Chiap P, Crommen J, Boulanger B, Chapuzet E, Mercier N, Bervoas-Martin S, Chevalier P, Grandjean D, Lagorce P, Lallier M, Laparra MC, Laurentie M, Nivet JC (1999) Anal Chim Acta 391:135–148

    Article  CAS  Google Scholar 

  51. Hubert P, Nguyen-Huu JJ, Boulanger B, Chapuzet E, Chiap P, Cohen N, Compagnon NA, Dewé W, Feinberg M, Lallier M, Laurentie M, Mercier N, Muzard G, Nivet C, Valat L (2004) J Pharm Biomed Anal 36:579–586

    CAS  Google Scholar 

  52. Keller T, Cambon N, Genevray M, Crivelli F, Crivelli M, Dal BL, Mazzuchelli P, Ismaili S, Marzo A (2005) Arzneimittelforschung 55:491–497

    CAS  Google Scholar 

  53. Najib NM, Idkaidek N, Beshtawi M, Mohammed B, Admour I, Alam SM, Dham R, Qumaruzaman (2005) Biopharm Drug Dispos 26:243–247

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Youssef Daali from the Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals (Switzerland) for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Staub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Déglon, J., Lauer, E., Thomas, A. et al. Use of the dried blood spot sampling process coupled with fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry: application to fluoxetine, norfluoxetine, reboxetine, and paroxetine analysis. Anal Bioanal Chem 396, 2523–2532 (2010). https://doi.org/10.1007/s00216-009-3412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3412-6

Keywords

Navigation