Skip to main content
Log in

New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Demand is growing in the field of medical diagnostics for simple, disposable devices that also demonstrate fast response times, are easy to handle, are cost-efficient, and are suitable for mass production. Polymer-based microfluidic devices meet the requirements of cost efficiency and mass production and they are suitable for biosensor applications. Conducting polymer-based electrochemical sensors have shown numerous advantages in a number of areas related to human health, such as the diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology, due to their simplicity and high sensitivity. One of the most promising group of conductive polymers is poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives due to their attractive properties: high stability, high conductivity (up to 400–600 S/cm) and high transparency. This review paper summarizes newly developed methods associated with the application of PEDOT to diagnostic sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PEDOT, PEDT:

Poly(3,4-ethylenedioxythiophene)

EDOT:

3,4-Ethylenedioxythiophene

PSS:

Poly(styrene-sulfonate)

PDMS:

Poly(dimethlysiloxane)

ITO:

Indium tin oxide

CP:

Conductive polymer

MIP:

Molecularly imprinted polymers

References

  1. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    Article  CAS  Google Scholar 

  2. Ziegler C (2000) Cell-based biosensors. Fresenius J Anal Chem 366:552–559

    Article  CAS  Google Scholar 

  3. Bakker E (2004) Electrochemical sensors. Anal Chem 76:3285–3298

    Article  CAS  Google Scholar 

  4. Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 5:6217–6229

    Article  CAS  Google Scholar 

  5. Amatore C, Arbault S, Guille M, Lemaıtre F (2008) Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev 108:2585–2621

    Article  CAS  Google Scholar 

  6. Guimarda NK, Gomezb N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921

    Article  CAS  Google Scholar 

  7. Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    Google Scholar 

  8. Timpanaro S, Kemerink M, Touwslager FJ, De Kok MM, Schrader S (2004) Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy. Chem Phys Lett 394:339–343

    Article  CAS  Google Scholar 

  9. Hong JI, Yeo IH, Paik WK (2001) Conducting polymer with metal. Oxide for electrochemical capacitor. J Electrochem Soc 148:A156

    Article  CAS  Google Scholar 

  10. Ruffoa R, Celik-Cochet A, Posset U, Maria CM, Schottner G (2008) Mechanistic study of the redox process of an in situ oxidatively polymerised poly(3,4-ethylenedioxythiophene) film. Sol Energy Mater Sol Cells 92:140–145

    Google Scholar 

  11. Han D-H, Kim J-W, Park S-M (2006) Electrochemistry of conductive polymers 38. Electrodeposited poly(3,4-ethylenedioxy-thiophene) studied by current sensing atomic force microscopy. J Phys Chem B 110:14874–14880

    Google Scholar 

  12. Aasmundtveit KE, Samuelsen EJ, Inganas O, Pettersson LAA, Johansson T, Ferrer S (2000) Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth Met 11:393–397

    Google Scholar 

  13. Winther-Jensen B, Breiby DW, West K (2005) Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III) tosylate. Synth Met 152:1–4

    Google Scholar 

  14. Skotheim TA, Reynolds JR (2007) Conjugated polymers: theory, synthesis, properties, characterization. CRC Press, Boca Raton

  15. Pettersson LAA, Carlsson F, Inganas O, Arwin H (1998) Spectroscopic ellipsometry studies of optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal thin. Solid Films 313–314:356

    Google Scholar 

  16. Winther-Jensen B, Chen J, West K, Wallace G (2005) Stuffed conducting polymers. Polymer 46:4664

    CAS  Google Scholar 

  17. Chen J, Winther-Jensen B, Lynam C, Ngamna O, Moulton S, Zhang W, Wallace GG (2006) A simple means to immobilize enzyme into conducting polymers via entrapment. Electrochem Solid-State Lett 9:H68

    Article  CAS  Google Scholar 

  18. Xiao YH, Li CM, Toh M-L, Xu R (2008) Adenosine 5′-triphosphate incorporated poly(3,4-ethylenedioxythiophene) modified electrode: a bioactive platform with electroactivity, stability and biocompatibility. J Appl Electrochem 38:1735–1741

    Google Scholar 

  19. Drillet J-F, Dittmeyer R, Juttner K (2007) Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode. J Appl Electrochem 37:1219–1226

    Article  CAS  Google Scholar 

  20. Rumbau V, Pomposo JA, Eleta A, Rodriguez J, Grande H, Mecerreyes D, Ochoteco E (2007) First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules 8:315–328

    Google Scholar 

  21. Lugwig KA, Uram JD, Yang J, Martin DC (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3:59–70

    Google Scholar 

  22. Aleman C, Teixeira-Dias B, Zanuy D, Estrany F, Armelin E, del Valle LJ (2009) A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene). Polymer 50:1965–1974

    Google Scholar 

  23. Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399

    Article  CAS  Google Scholar 

  24. Kim TY, Park CM, Kim JE, Su KS (2005) Electronic, chemical and structural change induced by organic solvents in tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs). Synth Met 149:169–174

    Google Scholar 

  25. Wallace GG, Kane-Maguire LAP (2002) Manipulating and monitoring biomolecular interactions with conductive electroactive polymers. Adv Mater 14:953–960

    CAS  Google Scholar 

  26. Richardson RT, Thompson B, Moulton S, Newbold C, Lum MG, Cameron A, Wallace GG, Kapsa R, Clark G, O'Leary S (2007) The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 28:513–523

    Article  CAS  Google Scholar 

  27. Xiao YH, Li CM, Toh M-L, Xue R (2005) Adenosine 5′-triphosphate incorporated poly(3,4-ethylenedioxythiophene) modified electrode: a bioactive platform with electroactivity, stability and biocompatibility. Chem Biol Interact 157–158:423–426

    Google Scholar 

  28. Matsumoto N, Sorimachi M, Akaike N (2004) Excitatory effects of ATP on rat dorsomedial hypothalamic neurons. Brain Res 1009:234–237

    Article  CAS  Google Scholar 

  29. Yamato H, Ohwa M, Wernet W (1995) Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J Electroanal Chem 397(1–2):163–170

    Google Scholar 

  30. Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3:59–70

    Google Scholar 

  31. Kumar SS, Mathiyarasu J, Phani KLN, Yegnaraman V (2006) Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode. J Solid State Electrochem 10:905–913

    Google Scholar 

  32. Kumar SS, Mathiyarasu J, Phani KL, Jain YK, Yegnaramana V (2005) Determination of uric acid in the presence of ascorbic acid using poly(3,4-ethylenedioxythiophene)-modified electrodes. Electroanalysis 17(24):2281–2286

    Google Scholar 

  33. Kumar SS, Mathiyarasu J, Phani KL (2005) Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J Electroanal Chem 578:95–103

    Article  CAS  Google Scholar 

  34. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2007) PEDOT-Au nanocomposite films for electrochemical sensing of dopamine and uric acid. J Nanosci Nanotechnol 7:2206–2210

    Article  CAS  Google Scholar 

  35. Sarmaa AK, Vatsyayanb P, Goswamib P (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    Article  CAS  Google Scholar 

  36. Ding J, Price WE, Ralph SF, Wallace GG (2000) Synthesis and properties of a mechanically strong poly(bithiophene) composite polymer containing a polyelectrolyte dopant. Synth Met 110:123–132

    Article  CAS  Google Scholar 

  37. Balamurugan A, Chen CM (2007) Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal Chim Acta 596:92–98

    Google Scholar 

  38. Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M (2007) An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens Actuators B 126:252–257

    Google Scholar 

  39. Park J, Kim HK, Son Y (2008) Glucose biosensor constructed from capped conducting microtubules of PEDOT. Sens Actuators B 133:244–250

    Article  CAS  Google Scholar 

  40. Santhosh P, Manesh KM, Uthayakumar S, Komathi S, Gopalan AI, Lee K-P (2009) Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers. Bioelectrochemistry 75:61–66

    Google Scholar 

  41. Macaya DJ, Nikolou M, Takamatsu S, Mabeck JT, Owens RM, Malliaras GG (2007) Simple glucose sensors with micromolar sensitivity based on organicelectrochemical transistors. Sens Actuators B 123:374–378

    Article  CAS  Google Scholar 

  42. Chiu J-Y, Yu C-M, Yen M-J, Chen L-C (2009) Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosens Bioelectron 24:2015–2020

    Google Scholar 

  43. Liu J, Agarwal M, Varahramyan K (2008) Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer. Sens Actuators B 135:195–199

    Article  CAS  Google Scholar 

  44. Vasantha VS, Chen SM (2006) Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J Electroanal Chem 592:77–87

    Google Scholar 

  45. Balamurugan A, Chen S-M (2008) Voltammetric oxidation of NADH at phenyl azoaniline/PEDOT modified electrode. Sens Actuators B 129:850–858

    Article  CAS  Google Scholar 

  46. Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75:1307–1314

    Google Scholar 

  47. Goriushkina TB, Shkotova LV, Gayda GZ, Klepach HM, Gonchar MV, Soldatkin AP, Dzyadevych SV (2009) Amperometric biosensor based on glycerol oxidase for glycerol determination. Sens Actuators B (in press)

  48. Tamiya E, Karube I, Hattori S, Sizuki M, Yokoyama K (1989) Micro glucose sensors using electron mediators immobilized on a polypyrrole-modified electrode. Sensors Actuators 18:297–307

    Article  CAS  Google Scholar 

  49. Mouffouk F, Higgins SJ (2006) A biotin-functionalised poly(3,4-ethylenedioxythiophene)-coated microelectrode which responds electrochemically to avidin binding. Electrochem Commun 8:15–20

    Google Scholar 

  50. Piletsky SA, Alcock S, Turner APF (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 19(1):9–12

    Google Scholar 

  51. Weng C-H, Yeh W-M, Ho K-C, Lee G-B (2007) A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sens Actuators B 121:576–582

    Article  CAS  Google Scholar 

  52. Richardson-Burns SM, Hendrick JL, Foster B, Povlich LK, Kim D-H, Martin DC (2007) Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28:1539–1552

    Google Scholar 

  53. Odaci D, Kayahan SK, Timur S, Toppare L (2008) Use of a thiophene-based conducting polymer in microbial biosensing. Electrochim Acta 53:4104–4108

    Article  CAS  Google Scholar 

  54. Hansen TS, West K, Hassager O, Larsen NB (2006) Integration of conducting polymer network in non-conductive polymer substrates. Synth Met 156:1203–1207

    Article  CAS  Google Scholar 

  55. Hansen TS, West K, Hassager O, Larsen NB (2007) Direct fast patterning of conductive polymers using agarose stamping. Adv Mater 19:3261–3265

    Article  CAS  Google Scholar 

  56. Hansen TS, West K, Hassager O, Larsen NB (2007) An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system. J Micromech Microeng 17:860–866

    Google Scholar 

  57. Mateiu R, Lillemose M, Hansen TS, Boisen A, Geschke O (2007) Reliability of poly 3,4-ethylenedioxythiophene strain gauge. Microelectron Eng 84:1270–1273

    Google Scholar 

  58. Latessa G, Brunetti F, Reale A, Saggio G, Di Carlo A (2009) Piezoresistive behaviour of flexible PEDOT:PSS based sensors. Sens Actuators B 139:304–309

  59. Kwon IW, Son HJ, Kim WY, Lee YS, Lee HC (2009) Thermistor behavior of PEDOT:PSS thin film. Synth Met 159:1174–1177

    Google Scholar 

  60. Green RA, Lovell NH, Poole-Warren LA (2009) Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30:3637–3644

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Danish Research Council for Technology and Production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Rozlosnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozlosnik, N. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal Bioanal Chem 395, 637–645 (2009). https://doi.org/10.1007/s00216-009-2981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2981-8

Keywords

Navigation