Skip to main content
Log in

Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and evaluation of a molecularly imprinted polymer (MIP) as a selective matrix solid-phase dispersion (MSPD) sorbent, coupled with high-performance liquid chromatography for the efficient determination of chloramphenicol (CAP) in fish tissues are studied. The polymer was prepared using CAP as the template molecule, vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and sodium dodecyl sulfate as the surfactant in the presence of water as a solvent by miniemulsion polymerization. The CAP-imprinted polymers and nonimprinted polymers (NIPs) were characterized by Fourier transform IR spectroscopy, scanning electron microscopy, and static adsorption experiments. The CAP-imprinted material prepared showed high adsorption capacity, significant selectivity, and good site accessibility. The maximum static adsorption capacity of the CAP-imprinted and the NIP material for CAP was 78.4 and 59.9 mg g-1, respectively. The relative selectivity factors of this CAP-imprinted material were larger than 1.9. Several parameters influencing the MSPD process were optimized. Finally, the CAP-imprinted polymers were used as the sorbent in MSPD to determine CAP in three kinds of fishes and resulted in satisfactory recovery in the range 89.8–101.43%. CAP-imprinted polymer as a sorbent in MSPD is better than C18 and attapulgite in terms of both recovery and percent relative standard deviation. The baseline noise was measured from a chromatogram of a blank fish sample which was treated after the MSPD procedure using CAP-imprinted polymer as a sorbent. Signal values of 3 times the noise (signal-to-noise ratio of 3) and 10 times the noise (signal-to-noise ratio of 10) were used to calculate the limit of detection and the limit of quantitation of the calibration curve. The limit of detection for CAP was 1.2 ng g-1 and the limit of quantitation was 3.9 ng g-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wulff G, Sarhan A (1972) Angew Chem Int Ed Engl 11:341–346

    CAS  Google Scholar 

  2. Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Nature 361:645–647

    Article  CAS  Google Scholar 

  3. Watabe Y, Hosoya K, Tanaka N, Kubo T, Kondo T, Morita M (2005) J Chromatogr A 1073:363–370

    Article  CAS  Google Scholar 

  4. Lakshmi D, Prasad BB, Sharma PS (2006) Talanta 70:272–280

    Article  CAS  Google Scholar 

  5. Nie F, Lu J, He Y, Du JX (2005) Talanta 66:728–733

    Article  CAS  Google Scholar 

  6. Yang GL, Liu HY, Wang MM, Liu SB, Chen Y (2006) React Funct Polym 66:579–583

    Article  CAS  Google Scholar 

  7. Jiang XM, Tian W, Zhao CD, Zhang HX, Liu MC (2007) Talanta 72:119–125

    Article  CAS  Google Scholar 

  8. Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Polym Lett Ed 11:503–508

    Article  CAS  Google Scholar 

  9. Dawkins JV (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science. Pergamon, Oxford, pp 231–251

    Google Scholar 

  10. Ye L, Weiss R, Mosbach K (2000) Macromolecules 33:8239–8245

    Article  CAS  Google Scholar 

  11. Perez N, Whitcombe MJJ (2000) J Appl Polym Sci 77:1851–1859

    Article  CAS  Google Scholar 

  12. Priego-Capote F, Ye L, Shakil S, Shamsi AS, Nilsson S (2008) Anal Chem 80:2881–2887

    Article  CAS  Google Scholar 

  13. Vaihinger D, Landfester K, Krauter I, Brunner H, Gunter EMT (2002) Macromol Chem Phys 203:1965–1973

    Article  CAS  Google Scholar 

  14. Garcia-Lopez M, Canosa P, Rodriguez I (2008) Anal Bioanal Chem 391:963–974

    Article  CAS  Google Scholar 

  15. Crescenzi C, Bayoudh S, Cormack PAG, Klein T, Ensing K (2001) Anal Chem 73:2171–2177

    Article  CAS  Google Scholar 

  16. Kubala-Drincic H, Bazulic D, Sapunar-Postruznik J, Grubelic M, Stuhne G (2003) J Agric Food Chem 51:871–875

    Article  CAS  Google Scholar 

  17. Xiao HB, Krucker M, Albert K, Liang XM (2004) J Chromatogr A 1032:117–124

    Article  CAS  Google Scholar 

  18. Zhao M, Van der Wielen F, De Voogt P (1999) J Chromatogr A 873:129–138

    Article  Google Scholar 

  19. Pensado L, Casais MC, Mejuto MC, Cela R (2005) J Chromatogr A 1077:103–109

    Article  CAS  Google Scholar 

  20. Tolls J, Haller M, Sijm DT (1999) Anal Chem 71:5242–5247

    Article  CAS  Google Scholar 

  21. Ahmed AF, Ahmad J, Amer AR, Saif AH (2007) Environ Geol 51:1317–1327

    Article  Google Scholar 

  22. Dai RL, Zhang GY, Gu XZ, Wang MK (2008) Environ Geochem Health. doi:10.1007/s10653–007–9130–0

  23. Keito B, Naomitsu S, Kazuo M (2001) J Am Oil Chem Soc 78(7):733–736

    Article  Google Scholar 

  24. Yan HY, Qiao FX, Row KH (2007) Anal Chem 79:8242–8248

    Article  CAS  Google Scholar 

  25. Vivekanandan K, Swanmy MG, Prasad S, Mukherjee R (2005) Rapid Commun Mass Spectrom 19:3025–3030

    Article  CAS  Google Scholar 

  26. Bogusz MJ, Hassan H, Al-Enzai E, Ibrahim Z, Al-Tufail M (2004) J Chromatogr B 807:343–356

    Article  CAS  Google Scholar 

  27. European Council (1994) Council Regulation (EEC) no. 2377/90 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin, amending regulation no. 1430/94 of 22 June 1994. Off J Eur Community L15623:6

  28. Delahaut P, Levaux C, Eloy P, Dubois M (2003) Anal Chim Acta 483:335–340

    Article  CAS  Google Scholar 

  29. Singer CJ, Katz SE (1985) J Assoc Off Anal Chem 68:1037–1041

    CAS  Google Scholar 

  30. Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M (2005) Anal Chim Acta 529:109–113

    Article  CAS  Google Scholar 

  31. Posyniak A, Zmudzki J, Niedzielska J (2003) Anal Chim Acta 483:307–311

    Article  CAS  Google Scholar 

  32. Mottier P, Parisod V, Gremaud E, Guy P, Stadler R (2003) J Chromatogr A 994:75–84

    Article  CAS  Google Scholar 

  33. Han DM, Fang GZ, Yan XP (2005) J Chromatogr A 1100:131–136

    Article  CAS  Google Scholar 

  34. Raphael L, Scott M, Sergey AP, Soo-Hwan C, Kazuyoshi Y, Isao K (1997) Anal Chem 69:2017–2021

    Article  Google Scholar 

  35. Mena ML, Agui L, Martinez-Ruiz P, Yanez-Sedeno P, Reviejo AJ, Pingarron JM (2003) Anal Bioanal Chem 376:18–25

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Fund (no. 20775029), the Huo Ying Dong Science Fund of China (no. 104038), the Program for New Century Excellent Talents in University (NCET-07–0400), and the Central Teacher Plan of Lanzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Guan, M., Zhao, C. et al. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination. Anal Bioanal Chem 392, 1431–1438 (2008). https://doi.org/10.1007/s00216-008-2454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2454-5

Keywords

Navigation