Skip to main content
Log in

Investigating morphological changes in treated vs. untreated stone building materials by x-ray micro-CT

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Calcareous stones have been largely used to build historical buildings. Among these, the calcarenites are usually characterized by a high content of calcite and a high open porosity, which make them very sensitive to the weathering caused by physical and chemical agents. In order to prevent their deterioration and to retard their decay, different protective products—mainly polymers—are applied on the stone artefact surfaces. In this work we apply the methodology tested in a preliminary study to investigate the morphological changes of the internal structure of a biocalcarenite (Lecce stone) by micro x-ray computed tomography (μ-CT). The porosity and other morphological parameters of the rock before and after the conservation treatment were calculated on a significant number of samples. The Student’s t test was applied for statistical comparison. The results reveal that the treatment with Paraloid B72 (PB 72) is homogenously distributed and causes small changes to the natural properties of the rock, whereas the application of a fluoroelastomer (NH) causes an appreciable decrease in porosity and variation in terms of wall thickness distribution, probably resulting from its inhomogeneous distribution.

Porosity and other morphological parameters of Lecce stone were investigated by μ-CT: the effect of conservation treatment with fluoroelastomer on wall thickness distribution is illustrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rijniers LA, Pel L, Huinink HP, Kopinga K (2005) Magn Reson Imaging 23:273–276

    Article  CAS  Google Scholar 

  2. Sabbioni C (1995) Sci Total Environ 167:49–55

    Article  CAS  Google Scholar 

  3. Turkington AV, Martin E, Viles HA, Smith BJ (2003) Build Environ 38(9–10):1205–1216

    Article  Google Scholar 

  4. Beck K, Al-Mukhtar M, Rozenbaum O, Rautureau M (2003) Build Environ 38:1151–1162

    Article  Google Scholar 

  5. Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M (2007) Appl Geochem 22(6):1248–1254

    Article  CAS  Google Scholar 

  6. UNI 10859 (2000) Norma Italiana Beni Culturali, Materiali lapidei naturali e artificiali: determinazione dell’assorbimento d’acqua per capillarità

  7. DOC NORMAL 21/85 (1982) Materiali lapidei: permeabilità al vapor d’acqua. Ed. CNR-ICR Comas Grafica, Rome

  8. DOC NORMAL 33/89 (1991) Misura dell’angolo di contatto. CNR-ICR Comas Grafica, Rome

  9. Casadio F, Toniolo L (2004) JAIC 43(1):3–21

    Google Scholar 

  10. Ashurst J, Dimes FG (1990) Conservation of building and decorative stone. Butterworth-Heinemann, London

  11. Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K (2007) X-Ray Spectrom 36(5):316–320

    Article  CAS  Google Scholar 

  12. Borgia GC, Camaiti M, Cerri F, Fantazzini P, Piacenti F (2003) Stud Conserv 48(4):217–226

    CAS  Google Scholar 

  13. Peele AG, Quiney HM, Dhal BB, Mancuso AP, Arhatari B, Nugent KA (2006) Radiat Phys Chem 75:2067–2071

    Article  CAS  Google Scholar 

  14. Mees F, Swennen R, Van Geet M, Jacobs P (2003) Applications of x-ray computed tomography in geoscience. In: Mees F, Swennen R, Van Geet M, Jacobs P (eds) Applications of x-ray computed tomography in geoscience. Geological Society, London, pp 1–6

    Google Scholar 

  15. Jones KW, Feng H, Lindquist WB, Adler PM, Thovert JF, Vekemans B, Vincze L, Szaloki I, Van Grieken R, Adams F, Riekel C (2003) Study of microgeometry of porous materials using synchrotron computed microtomography. In: Mees F, Swennen R, Van Geet M, Jacobs P (eds) Applications of x-ray computed tomography in geoscience. Geological Society, London, pp 39–49

    Google Scholar 

  16. Brunetti A, Princi E, Vicini S, Pincin S, Bidali S, Mariani A (2004) Nucl Instrum Meth B 222:235–241

    Article  CAS  Google Scholar 

  17. Cnudde V, Cnudde JP, Dupuis C, Jacobs PJS (2004) Mater Charact 53:259–271

    Article  CAS  Google Scholar 

  18. Cnudde V and Jacobs PJS (2004) Environ Geol 46:477–485 (9–10):1205–1216

  19. Roby TC (1996) In: Riederer J (ed) Proceedings of the 8th international congress on the deterioration and conservation of stone, Berlin, 30 September–4 October 1996. ISBN 3000007792, pp 1015–1028

  20. Feldkamp LA, Davis LC, Kress JW (1984) J Opt Soc Am 1(6):612–619

    Article  Google Scholar 

  21. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical Chemistry, 5th edn. Pearson Education, New York, ISBN 0131291920

  22. Russ JC (2006) The image processing handbook, 5th edn. CRC, Boca Raton, ISBN 0849372542

  23. Cnudde V, Jacobs PJS (2004) Env Geol 46:477–485

    Article  CAS  Google Scholar 

  24. Hilderbrand T, Ruegsegger P (1997) J Microsc 185:67–75

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the ATHENA project (Contract MEST-CT 2004 – 504067) within Marie Curie Actions for funding part of Simone Bugani’s PhD project and Dr. Olivieri for linguistic consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Camaiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugani, S., Camaiti, M., Morselli, L. et al. Investigating morphological changes in treated vs. untreated stone building materials by x-ray micro-CT. Anal Bioanal Chem 391, 1343–1350 (2008). https://doi.org/10.1007/s00216-008-1946-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1946-7

Keywords

Navigation