Skip to main content
Log in

Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have recently constructed a “DNA strut” consisting of two DNA-binding hairpin polyamides of Dervan-type connected via a long flexible linker and were able to show that this strut can be used to sequence-selectively connect DNA helices. This approach provides a second structural element (besides the Watson–Crick base pairing) for the assembly of higher-order DNA nanoarchitectures from smaller DNA building blocks. Since none of the existing analytical techniques for studying this kind of system were found suitable for detection and quantification of the formation of the resulting complexes, we chose fluorescence correlation spectroscopy (FCS). In the present study we show that FCS allowed us in a versatile and fast way to investigate the binding of Dervan polyamides to DNA. In particular it also shows its power in the quantitative detection of the formation of multimeric complexes and the in investigation of binding under nonphysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seeman NC (2003) Nature 421:427–431

    Article  CAS  Google Scholar 

  2. Feldkamp U, Niemeyer CM (2006) Angew Chem Int Ed 45:1856–1876

    Article  CAS  Google Scholar 

  3. Smith WM, Quispe JD, Joyce GF (2004) Nature 427:618–621

    Article  CAS  Google Scholar 

  4. Liu D, Park SH, Reif JH, LaBean TH (2004) Proc Natl Acad Sci USA 101:717–722

    Article  CAS  Google Scholar 

  5. Rothemund PWK (2006) Nature 440:297–302

    Article  CAS  Google Scholar 

  6. Liu Y, West SC (2004) Nat Rev Mol Cell Biol 5:937–946

    Article  CAS  Google Scholar 

  7. Fu T, Seeman NC (1993) Biochemistry 32:3211–3220

    Article  CAS  Google Scholar 

  8. Dervan PB (2001) Bioorg Med Chem 9:2215–2235

    Article  CAS  Google Scholar 

  9. Dervan PB, Edelson BS (2003) Curr Opin Struct Biol 13:284–299

    Article  CAS  Google Scholar 

  10. Schmidt TL, Nandi CK, Rasched G, Parui PP, Brutschy B, Famulok M, Heckel A (2007) Angew Chem Int Ed 46:4382–4384

    Article  CAS  Google Scholar 

  11. Trauger JW, Dervan PB (2001) Methods Enzymol 340:450–466

    CAS  Google Scholar 

  12. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878–5891

    Article  CAS  Google Scholar 

  13. Schwille P, Meyer-Almes FJ, Rigler R (1997) Biophys J 72:1878–1886

    CAS  Google Scholar 

  14. Berland KM, So PT, Gratton E (1995) Biophys J 68:694–701

    Article  CAS  Google Scholar 

  15. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biochemistry 41:697–705

    Article  CAS  Google Scholar 

  16. Magde D, Elson E, Webb WW (1972) Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  17. Elson E, Magde D (1974) Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  18. Schwille P, Bieschke J, Oehlenschlager F (1997) Biophys Chem 66:211–228

    Article  CAS  Google Scholar 

  19. Weiss S (1999) Science 283:1676–1683

    Article  CAS  Google Scholar 

  20. Meseth U, Wohland T, Rigler R, Vogel H (1999) Biophys J 76:1619–1631

    CAS  Google Scholar 

  21. Carl Zeiss Advanced Imaging Microscopy (2001) Applications manual LSM 510—Confocor 2 fluorescence correlation spectroscopy. Carl Zeiss, Jena

    Google Scholar 

  22. Bacia K, Schwille P (2003) Methods 29:74–85

    Article  CAS  Google Scholar 

  23. Baird EE, Dervan PB (1996) J Am Chem Soc 118:6141–6146

    Article  CAS  Google Scholar 

  24. Oyama R, Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagwa H (2006) Nucleic Acids Res 34:e102

    Article  Google Scholar 

  25. Bacia K, Majoul IR, Schwille P (2002) Biophys J 83:1184–1193

    CAS  Google Scholar 

  26. Doi N, Takashima H, Kinjo M, Sakata K, Kawahashi Y, Oishi Y, Oyama R, Miyamoto-Sato E, Sawasaki T, Endo Y, Yanagawa H (2002) Genome Res 12:487–492

    Article  CAS  Google Scholar 

  27. Rucker VC, Foister S, Melander C, Dervan PB (2003) J Am Chem Soc 125:1195–1202

    Article  CAS  Google Scholar 

  28. Maeshima K, Janssen S, Laemmli UK (2001) EMBO J 20:3218–3228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CKN is grateful for a scholarship from the Alexander von Humboldt-Foundation. This work was supported by the DFG (SFB 624, SFB 579 and Cluster of Excellence “Macromolecular Complexes” EXC115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Heckel or Bernhard Brutschy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 439 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, C.K., Parui, P.P., Schmidt, T.L. et al. Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures. Anal Bioanal Chem 390, 1595–1603 (2008). https://doi.org/10.1007/s00216-008-1852-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1852-z

Keywords

Navigation