Skip to main content
Log in

Laser-induced Fourier transform ion cyclotron resonance mass spectrometry of organic and inorganic compounds: methodologies and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The combination of a laser with a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS) enables a variety of MS experiments to be conducted. The laser can be used either as an intense photonic source for the photoionization of neutral species introduced in a variety of ways into the FTICR cell, or it can be made to directly interact with a solid, generating gas-phase ions. Depending on the experimental conditions used, various laser-matter interactions can occur. When high laser energy (also referred to as power density or irradiance) is used, laser ablation (LA) processes lead to the release of species into the gas phase, a significant fraction of which are ionic. The number of ions decreases with the irradiance. For low irradiance values, the so-called laser desorption (LD) regime applies, where the expelled species are mainly neutrals. LA–FTICRMS and LD–FTICRMS can be used to study a wide range of materials, including mineral, organic, hybrid and biological compounds (although matrix-assisted laser desorption ionization, MALDI, which is not reviewed in this paper, is more commonly applied to biological compounds). This paper will review a selection of methodological developments and applications in the field of laser ionization FTICRMS, LD–FTICRMS, and LA–FTICRMS for the analysis of organics and inorganics in complex mixtures, emphasizing insoluble materials. Specifically, silicate- and carbon-based complex materials as well as organic compounds will be examined due to their relevance to natural environmental and anthropogenic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dienes T, Pastor SJ, Schürch S, Scott JR, Yao J, Cui S, Wilkins CL (1996) Mass Spectrom Rev 15:163–211

    CAS  Google Scholar 

  2. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    CAS  Google Scholar 

  3. Marshall AG, Hendrickson CL (2002) Int J Mass Spectrom 215:59–75

    CAS  Google Scholar 

  4. Pyrek JS (1999) Synlett 2:249–266

    Google Scholar 

  5. Heeren RMA, Kleinnijenhuis AJ, McDonnell LA, Mize TH (2004) Anal Bioanal Chem 378:1048–1058

    CAS  Google Scholar 

  6. Wu Z, Rodgers RP, Marshall AG (2005) Fuel 84:1790–1797

    CAS  Google Scholar 

  7. Klein GC, Rodgers RP, Marshall AG (2006) Fuel 85:2071–2080

    CAS  Google Scholar 

  8. Van Vaeck L, Struyf H, Van Roy W, Adams F (1994) Mass Spectrom Rev 13:189–208

    CAS  Google Scholar 

  9. Van Vaeck L, Struyf H, Van Roy W, Adams F (1994) Mass Spectrom Rev 13:209–232

    CAS  Google Scholar 

  10. Haglund RF (1996) Appl Surf Sci 96–98:1–13

    Google Scholar 

  11. Miller JC (1994) (eds) Laser ablation: principles and applications. Springer, Berlin

  12. Miller JC, Haglund RF (eds)(1998) Laser ablation and desorption. Academic, London

  13. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Chem Rev 103:321–348

    CAS  Google Scholar 

  14. Georgiou S, Koubenakis A (2003) Chem Rev 103:349–394

    CAS  Google Scholar 

  15. Dreisewerd K (2003) Chem Rev 103:395–426

    CAS  Google Scholar 

  16. Karas M, Kruger R (2003) Chem Rev 103:427–440

    CAS  Google Scholar 

  17. Knochenmuss R, Zenobi R (2003) Chem Rev 103:441–452

    CAS  Google Scholar 

  18. Lippert T, Dickinson JT (2003) Chem Rev 103:453–486

    CAS  Google Scholar 

  19. Paltauf G, Dyer PE (2003) Chem Rev 103:487–518

    CAS  Google Scholar 

  20. Bityurin N, Luk’yanchuk BS, Hong MH, Chong TC (2003) Chem Rev 103:519–552

    CAS  Google Scholar 

  21. Chrisey DB, Pique A, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu PK (2003) Chem Rev 103:553–576

    CAS  Google Scholar 

  22. Vogel A, Venugopalan V (2003) Chem Rev 103:577–644

    CAS  Google Scholar 

  23. Cotter RJ (1984) Anal Chem 56:485A–504A

    CAS  Google Scholar 

  24. van der Hart WJ (1992) Int J Mass Spectrom Ion Processes 118–119:617–633

    Google Scholar 

  25. Colorado A, Shen JX, Vartanian VH, Brodbelt J (1996) Anal Chem 68:4033–4043

    CAS  Google Scholar 

  26. Greenwood PF, Sherwood N, Willett GD (1995) J Anal Appl Pyrol 31:177–202

    CAS  Google Scholar 

  27. Van Vaeck L, Van Roy W, Struyf H, Adams F, Caravatti P (1993) Rapid Commun Mass Spectrom 7:323–331

    Google Scholar 

  28. Wood TD, Marshall AG (1991) J Am Soc Mass Spectrom 2:299–304

    CAS  Google Scholar 

  29. Speir JP, Amster IJ (1995) J Am Soc Mass Spectrom 6:1069–1078

    CAS  Google Scholar 

  30. Behm JM, Hemminger JC, Lykke KR (1996) Anal Chem 68:713–719

    CAS  Google Scholar 

  31. Perez J, Ramirez-Arizmendi LE, Petzold CJ, Guler LP, Nelson ED, Kenttamaa HI (2000) Int J Mass Spectrom 198:173–188

    CAS  Google Scholar 

  32. Campbell JL, Fiddler MN, Crawford KE, Gqamana PP, Kenttamaa HI (2005) Anal Chem 77:4020–4026

    CAS  Google Scholar 

  33. Crawford KE, Campbell JL, Fiddler MN, Duan P, Qian K, Gorbaty ML, Kenttamaa HI (2005) Anal Chem 77:7916–7923

    CAS  Google Scholar 

  34. Carlin TJ, Freiser BS (1983) Anal Chem 55:955–958

    CAS  Google Scholar 

  35. Sack TM, McCrery DA, Gross ML (1985) Anal Chem 57:1290–1295

    CAS  Google Scholar 

  36. Williams ER, McLafferty FW (1990) J Am Soc Mass Spectrom 1:361–365

    CAS  Google Scholar 

  37. Bowers WD, Delbert SS, McIver RT (1986) Anal Chem 58:969–972

    CAS  Google Scholar 

  38. Zimmerman JA, Watson CH, Eyler JR (1991) Anal Chem 63:361–365

    CAS  Google Scholar 

  39. McCrery DA, Ledford EB, Gross ML (1982) Anal Chem 54:1435–1437

    CAS  Google Scholar 

  40. Cody RB, Burnier RC, Reents WD, Carlin TJ, McCrery DA, Lengal RK, Freiser BS (1980) Int J Mass Spectrom Ion Phys 33:37–43

    CAS  Google Scholar 

  41. Cody RB, Burnier RC, Freiser BS (1982) Anal Chem 54:96–101

    CAS  Google Scholar 

  42. Ghaderi S (1988) Proc 36th ASMS Conf on Mass Spectrometry and Allied Topics, 5–10 June 1988, San Francisco, CA, pp 1126–1127

  43. Brenna JT (1989) In: Russell PE (ed) Microbeam analysis—1989. San Francisco Press Inc., Asheville, NC, pp 306–310

  44. Brenna JT, Creasy WR, McBain W, Soria C (1988) Rev Sci Instrum 59:873–879

    CAS  Google Scholar 

  45. Pelletier M, Krier G, Muller J-F, Weil D, Johnston M, MarshalI AG (1988) Rapid Commun Mass Spectrom 2:146–150

    CAS  Google Scholar 

  46. Muller J-F, Pelletier M, Krier G, Weil D, Campana J (1989) In: Russell PE (ed) Microbeam analysis—1989. San Francisco Press Inc., Asheville, NC, pp 311–316

  47. Aubriet F, Vernex-Loset L, Maunit B, Krier G, Muller J-F (2002) Int J Mass Spectrom 219:717–727

    CAS  Google Scholar 

  48. Muller J-F, Krier G, Aubriet F, Vernex-Loset L, Courrier B (2001) Laser ionization and applications, incorporating RIS 2000. AIP, Knoxville, TN, pp 29–34

  49. Van Vaeck L, Van Espen P, Gijbels R, Baykut G, Laukien FH (2000) Eur J Mass Spectrom 6:277–278

    Google Scholar 

  50. Moisio H, Van Vaeck L, Vangaever F (2007) Anal Chem 79:280–290

    CAS  Google Scholar 

  51. Scott JR, Tremblay PL (2002) Rev Sci Instrum 73:1108–1116

    CAS  Google Scholar 

  52. Yan B, McJunkin TR, Stoner DL, Scott JR (2006) Appl Surf Sci 253:2011–2017

    CAS  Google Scholar 

  53. Scott JR, Yan B, Stoner DL (2006) J Microbiol Meth 67:381–384

    CAS  Google Scholar 

  54. Creasy WR, Brenna JT (1990) J Chem Phys 92:2269–2279

    CAS  Google Scholar 

  55. Jiao CQ, Phelps DK, Lee S, Huang Y, Freiser BS (1993) Rapid Commun Mass Spectrom 7:404–408

    CAS  Google Scholar 

  56. Zhang R, Achiba Y, Fisher KJ, Gadd GE, Hopwood FG, Ishigaki T, Smith DR, Suzuki S, Willett GD (1999) J Phys Chem B 103:9450–9458

    CAS  Google Scholar 

  57. Rose HR, Smith DR, Fisher KJ, Dance IG, Willett GD, Wilson MA (1993) Org Mass Spectrom 28:825–830

    CAS  Google Scholar 

  58. Kubler B, Millon E, Gaumet JJ, Muller J-F (1997) Fullerene Sci Technol 5:839–853

    Google Scholar 

  59. Roth LM, Huang Y, Schwedler JT, Cassady CJ, Ben-Amotz D, Kahr B, Freiser BS (1991) J Am Chem Soc 113:6298–6299

    CAS  Google Scholar 

  60. McElvany SW (1992) J Phys Chem 96:4935–4937

    CAS  Google Scholar 

  61. Wood TD, Van Cleef GW, Mearini MA, Coe JV, Marshall AG (1993) Rapid Commun Mass Spectrom 7:304–311

    CAS  Google Scholar 

  62. Joblin C, Masselon C, Boissel P, de Parseval P, Martinovic S, Muller J-F (1997) Rapid Commun Mass Spectrom 11:1619–1623

    CAS  Google Scholar 

  63. Greenwood PF, Strachan MG, El-Nakat HJ, Willett GD, Wilson MA, Attalla MI (1990) Fuel 69:257–260

    CAS  Google Scholar 

  64. Greenwood PF, Strachan MG, Willett GD, Wilson MA (1990) Org Mass Spectrom 25:353–362

    CAS  Google Scholar 

  65. Xu C, Wang L, Qian S, Zhao L, Wang Z, Li Y (1997) Chem Phys Lett 281:426–430

    CAS  Google Scholar 

  66. Xu C, Long Y, Qian S, Li Y (2000) Micropor Mesopor Mat 39:351–358

    CAS  Google Scholar 

  67. Lafargue PE, Gaumet JJ, Muller JF, Labrosse A (1996) J Mass Spectrom 31:623–632

    CAS  Google Scholar 

  68. Lafargue PE, Gaumet JJ, Muller JF (1998) Chem Phys Lett 288:494–498

    CAS  Google Scholar 

  69. Jeong S, Fisher KJ, Howe RF, Willett GD (1995) Microporous Mater 4:467–473

    CAS  Google Scholar 

  70. Erel E, Aubriet F, Finqueneisel G, Muller J-F (2003) Anal Chem 75:6422–6429

    CAS  Google Scholar 

  71. Castello J, Gaumet JJ, Muller JF, Friour G, Guilment J, Poncelet O (2006) Progr Solid State Ch 34:95–102

    CAS  Google Scholar 

  72. Castello J, Gaumet JJ, Muller JF, Derousseaux S, Guilment J, Poncelet O (2007) Appl Surf Sci (in press)

  73. Aubriet F, Muller J-F, Poleunis C, Bertrand P, Di Croce PG, Grange P (2006) J Am Soc Mass Spectrom 17:406–414

    CAS  Google Scholar 

  74. Busuioc A-M, De Mondt R, Moisio H, Cool P, Vasile A, Bilba N, Vansant E, Van Vaeck L (2005) Rapid Commun Mass Spectrom 19:2809–2818

    CAS  Google Scholar 

  75. Srzic D, Martinovic S, Pasa Tolic L, Kezele N, Senkovic L, Shevchenko SM, Klasinc L (1995) Rapid Commun Mass Spectrom 9:245–249

    Google Scholar 

  76. Srzic D, Martinovic S, Pasa Tolic L, Kezele N, Kazazic S, Senkovic L, Shevchenko SM, Klasinc L (1996) Rapid Commun Mass Spectrom 10:580–582

    CAS  Google Scholar 

  77. Novotny FJ, Rice JA, Weil DA (1995) Environ Sci Technol 29:2464–2466

    CAS  Google Scholar 

  78. Brown TL, Rice JA (2000) Org Geochem 31:627–634

    CAS  Google Scholar 

  79. Fievre A, Solouki T, Marshall AG, Cooper WT (1997) Energy Fuels 11:554–560

    CAS  Google Scholar 

  80. Stenson AC, Marshall AG, Cooper WT (2003) Anal Chem 75:1275–1284

    CAS  Google Scholar 

  81. Mathey A, Van Roy W, Van Vaeck L, Eckhardt G, Steglich W (1994) Rapid Commun Mass Spectrom 8:46–52

    CAS  Google Scholar 

  82. Van Roy W, Mathey A, Van Vaeck L (1996) Rapid Commun Mass Spectrom 10:562–572

    Google Scholar 

  83. De Nollin S, Poels K, Van Vaeck L, De Clerck N, Bakker A, Duwel V, Vandevelde D, Van Marck E (1997) Pathol Res Pract 193:313–318

    Google Scholar 

  84. Ruch D, Muller JF, Migeon HN, Boes C, Zimmer R (2003) J Mass Spectrom 38:50–57

    CAS  Google Scholar 

  85. Ruch D, Boes C, Zimmer R, Muller JF, Migeon H-N (2003) Appl Surf Sci 203–204:566–570

    Google Scholar 

  86. Ruch D, Boes C, Zimmer R, Migeon H-N, Muller JF (2003) J Appl Polym Sci 87:1910–1917

    CAS  Google Scholar 

  87. Cuynen E, Van Vaeck L, Van Espen P (1999) In: Benninghoven A, Bertrand P, Migeon H-N, Werner HW (eds) 12th International Conference on Secondary Ion Mass Spectrometry. Elsevier, Brussels, pp 1033–1036

  88. Poels K, Van Vaeck L, Struyf H, Van Espen P, Adams F, Terryn H, De Bruyne P (1996) Rapid Commun Mass Spectrom 10:1351–1360

    CAS  Google Scholar 

  89. Lafargue PE, Chaoui N, Millon E, Muller JF, Derule H, Popadenec A (1998) Surf Coat Tech 106:268–276

    CAS  Google Scholar 

  90. Simonsick J, William J, Ross III CW (1996) Int J Mass Spectrom Ion Proc 157–158:379–390

  91. Colin S, Krier G, Jolibois H, Hachimi A, Muller JF, Chambaudet A (1998) Appl Surf Sci 125:29–45

    CAS  Google Scholar 

  92. Cassat P, Muller J-F, Manuelli P, Vichot A, Colombet P (1997) Rapid Commun Mass Spectrom 11:1612–1615

    CAS  Google Scholar 

  93. Struyf H, Van Vaeck L, Van Grieken R (1996) Rapid Commun Mass Spectrom 10:551–561

    CAS  Google Scholar 

  94. Aubriet F, Maunit B, Courrier B, Muller JF (1997) Rapid Commun Mass Spectrom 11:1596–1601

    CAS  Google Scholar 

  95. Struyf H, Van Vaeck L, Poels K, Van Grieken R (1998) J Am Soc Mass Spectrom 9:482–497

    CAS  Google Scholar 

  96. Poels K, Van Vaeck L, Gijbels R (1998) Anal Chem 70:504–512

    CAS  Google Scholar 

  97. Aubriet F, Maunit B, Muller J-F (2000) Int J Mass Spectrom 198:189–211

    CAS  Google Scholar 

  98. Aubriet F, Maunit B, Muller J-F (2001) Int J Mass Spectrom 209:5–21

    CAS  Google Scholar 

  99. Aubriet F, Muller J-F (2002) J Phys Chem A 106:6053–6059

    CAS  Google Scholar 

  100. Ignatova VA, Van Vaeck L, Gijbels R, Adams F (2002) Vacuum 69:307–313

    CAS  Google Scholar 

  101. Ignatova V, Van Vaeck L, Van Ham R, Adriaens A, Adams F (2002) Nucl Instrum Meth A 480:54–64

    Google Scholar 

  102. Ignatova V, Van Vaeck L, Gijbels R, Adams F (2003) Int J Mass Spectrom 225:213–224

    CAS  Google Scholar 

  103. Aubriet F, Poleunis C, Muller J-F, Bertrand P (2006) J Mass Spectrom 41:527–542

    CAS  Google Scholar 

  104. Carré V, Aubriet F, Scheepers PT, Krier G, Muller J-F (2005) Rapid Commun Mass Spectrom 19:871–880

    Google Scholar 

  105. Aubriet F, Carré V, Muller JF (2005) Spectrosc Eur 17:14–22

    CAS  Google Scholar 

  106. Struyf H, Van Vaeck L, Kennis P, Gijbels R, Van Grieken R (1996) Rapid Commun Mass Spectrom 10:699–706

    CAS  Google Scholar 

  107. Xu M, Kim HS, Guan S, Marshall AG, Dougherty RC (1998) Chemosphere 36:167–180

    CAS  Google Scholar 

  108. Yan B, Stoner DL, Scott JR (2007) Talanta (in press)

  109. Zimmermann R, Vaeck LV, Davidovic M, Beckmann M, Adams F (2000) Environ Sci Technol 34:4780–4788

    CAS  Google Scholar 

  110. Carré V, Vernex-Loset L, Krier G, Manuelli P, Muller J-F (2004) Anal Chem 76:3979–3987

    Google Scholar 

  111. Carré V, Aubriet F, Muller J-F (2005) Anal Chim Acta 540:257–268

    Google Scholar 

  112. Sun S, Cheng Z, Xie J, Zhang J, Liao Y, Wang H, Guo Y (2005) Rapid Commun Mass Spectrom 19:1025–1030

    CAS  Google Scholar 

  113. Xie J-P, Sun S-H, Wang H-Y, Zong Y-L, Nie C, Guo Y-L (2006) Rapid Commun Mass Spectrom 20:2573–2578

    CAS  Google Scholar 

  114. Krier G, Masselon C, Muller J-F, Nélieu S, Einhorn J (1994) Rapid Commun Mass Spectrom 8:22–25

    CAS  Google Scholar 

  115. Masselon C, Krier G, Muller J-F, Nélieu S, Einhorn J (1996) Analyst 121:1429–1433

    CAS  Google Scholar 

  116. Fasset JD, Paulsen PJ (1989) Anal Chem 61:643A–649A

    Google Scholar 

Download references

Acknowledgments

The author greatly acknowledges Prof. G. Groenewold and A. Gianotto for their editorial help and J.–F. Muller for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Aubriet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubriet, F. Laser-induced Fourier transform ion cyclotron resonance mass spectrometry of organic and inorganic compounds: methodologies and applications. Anal Bioanal Chem 389, 1381–1396 (2007). https://doi.org/10.1007/s00216-007-1491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1491-9

Keywords

Navigation