Skip to main content

Advertisement

Log in

A nanogold-quenched fluorescence duplex probe for homogeneous DNA detection based on strand displacement

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A nanogold-quenched fluorescence duplex probe has been developed for lighting up homogenous hybridization assays. This novel probe is constructed from two strands of different lengths, and labeled by nanogold and a fluorophore at the long-strand 5′-end and the short-strand 3′-end, respectively. The two tags are in close contact, resulting in complete quenching of the probe fluorescence. If perfectly complemented to the nanogold-labeled strand, a long target oligonucleotide would displace the short fluorophore-labeled strand, and as a result, restore the fluorescence. By using nanogold in the probe, an extremely high quenching efficiency (99.1%) and removal of free fluorophore-labeled strand is achieved. The signal-to-noise ratio and the detection limit (50 pmol L−1) of homogenous assays are therefore improved significantly, in comparison with similar probes using organic acceptors. Moreover, the probe has a great inhibition effect on hybridization to a mismatched oligonucleotide. This effect provides the assay with a high specificity, and particularly the assay has great potential in applications for discriminating variations in sequences. The assay sensitivity could be markedly enhanced by using fluorescent materials in the signal strand that are brighter and not quenched by nucleobases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ranasinghe RT, Brown T (2005) Chem Commun 44:5487–5502

    Article  CAS  Google Scholar 

  2. Asseline U (2006) Curr Org Chem 10:491–518

    Article  CAS  Google Scholar 

  3. Dirks RW, Tanke HJ (2006) Biotechniques 40:489–496

    Article  CAS  Google Scholar 

  4. Sapsford KE, Berti L, Medintz IL (2006) Angew Chem Int Ed Engl 45:4562–4588

    Article  CAS  Google Scholar 

  5. Tyagi S, Kramer FR (1996) Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  6. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Proc Natl Acad Sci USA 85:8790–8794

    Article  CAS  Google Scholar 

  7. Svanvik N, Westman G, Wang D, Kubista M (2000) Anal Biochem 281:26–35

    Article  CAS  Google Scholar 

  8. Tan L, Li Y, Drake TJ, Moroz L, Wang K, Li J, Munteanu A, Chaoyong JY, Martinez K, Tan W (2005) Analyst 130:1002–1005

    Article  CAS  Google Scholar 

  9. Marras SA, Tyagi S, Kramer FR (2006) Clin Chim Acta 363:48–60

    Article  CAS  Google Scholar 

  10. Morrison LE, Halder TC, Stols LM (1989) Anal Biochem 183:231–244

    Article  CAS  Google Scholar 

  11. Li Q, Luan G, Guo Q, Liang J (2002) Nucleic Acids Res 30:e5

    Article  Google Scholar 

  12. Cheng J, Zhang Y, Li Q (2004) Nucleic Acids Res 32:e61

    Article  CAS  Google Scholar 

  13. Shengqi W, Xiaohong W, Suhong C, Wei G (2002) Anal Biochem 309:206–211

    Article  CAS  Google Scholar 

  14. Dubertret B, Calame M, Libchaber AJ (2001) Nat Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  15. Maxwell DJ, Taylor JR, Nie S (2002) J Am Chem Soc 124:9606–9612

    Article  CAS  Google Scholar 

  16. Li H, Rothberg LJ (2004) Anal Chem 76:5414–5417

    Article  CAS  Google Scholar 

  17. Wu ZS, Jiang JH, Fu L, Shen GL, Yu RQ (2006) Anal Biochem 353:22–29

    Article  CAS  Google Scholar 

  18. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  19. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  20. Eggeling C, Fries JR, Brand L, Gunther R, Seidel CAM (1998) Proc Natl Acad Sci USA 95:1556

    Article  CAS  Google Scholar 

  21. Draganescu A, Hodawadekar SC, Gee KR, Brenner C (2000) J Biol Chem 275:4555

    Article  CAS  Google Scholar 

  22. Knemeyer JP, Marme N, Sauer M (2000) Anal Chem 72:3717–3724

    Article  CAS  Google Scholar 

  23. Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A (2002) Nucleic Acids Res 30:2089–2195

    Article  CAS  Google Scholar 

  24. Marras SAE, Kramer FR, Tyagi S (2002) Nucleic Acids Res 30:e122

    Article  Google Scholar 

  25. Heinlein T, Knemeyer JP, Piestert O, Sauer M (2003) J Phys Chem B 107:7957–7964

    Article  CAS  Google Scholar 

  26. Invitrogen (2007) In: The handbook—a guide to fluorescent probes and labeling technologies. http://probes.invitrogen.com/handbook/sections/0103.html

  27. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  28. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose, Li JJ, Iyer G, Weiss S (2006) Biomaterials 27:1679–1687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Hi-Tech Research and Development Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, ZH., Yang, XC., Guo, KP. et al. A nanogold-quenched fluorescence duplex probe for homogeneous DNA detection based on strand displacement. Anal Bioanal Chem 389, 493–497 (2007). https://doi.org/10.1007/s00216-007-1477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1477-7

Keywords

Navigation