Skip to main content
Log in

A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel and selective microbial amperometric biosensors that use Gluconobacter oxydans cells to monitor the bacterial bioconversion of glycerol (Gly) to 1,3-propanediol (1,3-PD) are described. Two different mediators, ferricyanide and flexible polyvinylimidazole osmium functionalized polymer (Os-polymer), were employed to prepare two different microbial biosensors, both of which gave high detection performance. The good operational stabilities of both types of biosensor were underlined by the ability to detect 1,3-PD throughout 140 h of continuous operation. Both microbial biosensor systems showed excellent selectivity for 1,3-PD in the presence of a high excess of glycerol [selectivity ratios (1,3-PD/Gly) of 118 or 245 for the ferricyanide and Os-polymer systems, respectively]. Further, the robustness of each microbial biosensor was highlighted by the high reliability of 1,3-PD detection achieved (average RSD of standards <2%, and well below 4% for samples). The biosensor implementing the Os-polymer mediator exhibited high selectivity towards 1,3-PD detection and allowed moderate sample throughput (up to 12 h−1) when integrated into a flow system. This system was used to monitor the concentration of 1,3-PD during a real bioprocess. Results from biosensor assays of 1,3-PD in bioprocess samples taken throughout the fermentation were in a very good agreement with results obtained from reference HPLC assays (R 2 = 0.999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3 a–c
Fig. 4

Similar content being viewed by others

References

  1. Haas T, Jaeger B, Weber R, Mitchell SF, King CF (2005) Appl Catal A 280:83–88

    Google Scholar 

  2. Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999) Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  3. Nakamura CE, Whited GM (2003) Curr Opin Biotech 14:454–459

    Article  CAS  Google Scholar 

  4. Hirschmann S, Baganz K, Koschik I, Vorlop K-D (2005) Landbauforsch Volk 55:261–267

    CAS  Google Scholar 

  5. Ying M, Hu T, Dai-Jia Z, Wei W, Zhi-Long X (2006) Biotechnol Lett 28:1755–1759

    Article  Google Scholar 

  6. Daniel R, Bobik TA, Gottschalk G (1998) FEMS Microbiol Rev 22:553–566

    Google Scholar 

  7. Turner APF (2000) Science 290:1315–1317

    Article  CAS  Google Scholar 

  8. Wang J (2005) Small 1:1036–1043

    Article  CAS  Google Scholar 

  9. Baronian KHR (2004) Biosens Bioelectron 19:953–962

    Article  CAS  Google Scholar 

  10. D’Souza SF (2001) Biosens Bioelectron 16:337–353

    Article  CAS  Google Scholar 

  11. Lei Y, Chen W, Mulchandani A (2006) Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  12. Riedel K (1991) Bioelectrochem Bioenerg 25:19–30

    Article  CAS  Google Scholar 

  13. Tkáč J, Štefuca V, Gemeiner P (2005) In: Nedović V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, Dordrecht, pp 549–566

  14. Tkáč J, Voštiar I, Gorton L, Gemeiner P, Šturdík E (2003) Biosens Bioelectron 18:1125–1134

    Article  Google Scholar 

  15. Tkáč J, Švitel J, Novák R, Šturdík E (2000) Anal Lett 33:2441–2452

    Google Scholar 

  16. Deppenmeier U, Hoffmeister M, Prust C (2002) Appl Microbiol Biotechnol 60:233–242

    Article  CAS  Google Scholar 

  17. Gupta A, Singh VK, Qazi GN, Kumar A (2001) J Mol Microb Biotech 3:445–456

    CAS  Google Scholar 

  18. Macauley S, McNeil B, Harvey LM (2001) Crit Rev Biotechnol 21:1–25

    Article  CAS  Google Scholar 

  19. Tkáč J, Gemeiner P, Švitel J, Benikovský T, Šturdík E, Vala V, Petruš L, Hrabárová E (2000) Anal Chim Acta 420:1–7

    Article  Google Scholar 

  20. Reshetilov AN, Donova MV, Dovbnya DV, Il’yasov PV, Boronin AM, Leasers T, Green R (1998) B Exp Biol Med+ 126:702–704

    Article  CAS  Google Scholar 

  21. Švitel J, Čurilla O, Tkáč J (1998) Biotechnol Appl Bioc 27:153–158

    Google Scholar 

  22. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  23. Švitel J, Tkáč J, Voštiar I, Navrátil M, Štefuca V, Bučko M, Gemeiner P (2006) Biotechnol Lett 28:2003–2010

    Article  Google Scholar 

  24. Voštiar I, Ferapontova EE, Gorton L (2004) Electrochem Commun 6:621–626

    Article  Google Scholar 

  25. Katrlík J, Mastihuba V, Voštiar I, Šefčovičová J, Štefuca V, Gemeiner P (2006) Anal Chim Acta 566:11–18

    Article  Google Scholar 

  26. Heiskanen A, Yakovleva J, Spegel C, Taboryski R, Koudelka-Hep M, Emneus J, Ruzgas T (2004) Electrochem Commun 6:219–224

    Article  CAS  Google Scholar 

  27. Lapenaite I, Ramanaviciene A, Ramanavicius A (2006) Crit Rev Anal Chem 36:13–25

    Article  CAS  Google Scholar 

  28. Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) Appl Environ Microbiol 69:1959–1966

    Article  CAS  Google Scholar 

  29. Su W, Chang ZY, Gao KL, Wei DZ (2004) Tetrahedron–Asymmetr 15:1275–1277

    Google Scholar 

  30. Gao KL, Song QX, Wei DZ (2006) Appl Microbiol Biotechnol 71:819–823

    Article  CAS  Google Scholar 

  31. Štefuca V, Voštiar I, Šefčovičová J, Katrlík J, Mastihuba V, Greifová M, Gemeiner P (2006) Appl Microbiol Biotechnol 72:1170–1175

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission, under the scope of the BIODIOL project. The BIODIOL project (QLK5-CT-2002-01343) is funded by the European Commission within the 5th Framework Program. The integrated bioprocess development and economical evaluation of BIODIOL also includes a partner’s work, which is not presented here. The EU is not responsible for the content of this publication. This work was also supported by a grant from the Slovak Grant Agency for Science VEGA under the Projects No. 1/1196/04, 1/4299/07 and 1/4452/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Katrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katrlík, J., Voštiar, I., Šefčovičová, J. et al. A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Anal Bioanal Chem 388, 287–295 (2007). https://doi.org/10.1007/s00216-007-1211-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1211-5

Keywords

Navigation