Skip to main content
Log in

Methylene blue derivatization then LC–MS analysis for measurement of trace levels of sulfide in aquatic samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The methylene blue method has been widely used for analysis of sulfide for more than 100 years. Direct measurement of methylene blue at nanomolar concentrations is impossible without a preconcentration step, however. In this study the response of LC–MS with electrospray ionization (ESI) to methylene blue was evaluated. HPLC with simple isocratic elution was followed by ESI-MS quantification, which was compared with traditional UV–visible detection. The limit of detection for sulfide was approximately 50 ng L−1, or 1.5 nmol L−1. Analysis time was substantially reduced by use of isocratic elution. Interfering compounds produced by side reactions can be eliminated by use of the mass filter. A polysulfide sample was also analyzed to determine which products are formed and whether or not polysulfides react stoichiometrically with methylene blue reagent. It seems that polysulfides do not react quantitatively with methylene blue and so cannot be quantified reliably by use of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  2. Schwarzenbach G, Widmer M (1963) Helv Chim Acta 46:2613–2628

    Article  CAS  Google Scholar 

  3. Fabbri D, Locatelli C, Snape CE, Tarabusi S (2001) J Environ Monit 3:483–486

    Article  CAS  Google Scholar 

  4. Jay JA, Morel FMM, Hemond HF (2000) Environ Sci Technol 34:2196–2200

    Article  CAS  Google Scholar 

  5. Paquette KE, Helz GR (1997) Environ Sci Technol 31:2148–2153

    Article  CAS  Google Scholar 

  6. Hurley JP, Krabbenhoft DP, Babiarz CL, Andren AW (1994) Cycling of mercury across sediment–water interface in seepage lakes. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. American Chemical Society, Washington, DC, pp 425–449

    Chapter  Google Scholar 

  7. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Crit Rev Environ Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  8. Ravichandran M (2004) Chemosphere 55:319–331

    Article  CAS  Google Scholar 

  9. Haitzer M, Aiken GR, Ryan JN (2002) Environ Sci Technol 36:3564–3570

    Article  CAS  Google Scholar 

  10. Craig PJ, Moreton PA (1986) Water Res 20:1118–1119

    Article  Google Scholar 

  11. Hintelmann H, Welbourn PM, Evans RD (1997) Environ Sci Technol 31:489–495

    Article  CAS  Google Scholar 

  12. Lawrence NSDJ, Compton RG (2000) Talanta 52:771–784

    Article  CAS  Google Scholar 

  13. Brower H, Murphy TP (1994) Environ Toxicol Chem 13:1273–1275

    Article  Google Scholar 

  14. Ehman DL (1976) Anal Chem 48:918–920

    Article  CAS  Google Scholar 

  15. Fischer E (1883) Chem Ber 26:2234–2236

    Google Scholar 

  16. Cline JD (1969) Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  17. Hassan SSM, Marzouk SAM, Sayour HEM (2002) Anal Chim Acta 446:47–55

    Article  Google Scholar 

  18. Tang D, Santchi PH (2000) J Chromatogr A 883:305–309

    Article  CAS  Google Scholar 

  19. Mylon SE, Benoit G (2001) Environ Sci Technol 35:4544–4548

    Article  CAS  Google Scholar 

  20. Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2003) Environ Sci Technol 37:3853–3858

    Article  CAS  Google Scholar 

  21. Millero FJ (2001) Physical chemistry of natural waters. Wiley–Interscience, pp 582–612

  22. Luther GW, Theberge SM, Rickard DT (1999) Geochim Cosmochim Acta 63:3159–3169

    Article  CAS  Google Scholar 

  23. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  24. Bowles KC, Ernste MJ, Kramer JR (2003) Anal Chim Acta 447:113–124

    Article  Google Scholar 

  25. Harris DC (1996) Quantitative chemical analysis, 4th edn. Freeman, New York, pp 439–445

    Google Scholar 

  26. Van Berkel GJ, Sanchez AD, Quirke ME (2002) Anal Chem 74:6216–6223

    Article  Google Scholar 

  27. Scheifers SM, Verma S, Cooks R (1983) Anal Chem 55:2260–2266

    Article  CAS  Google Scholar 

  28. Keith LH, Crummett W, Deegan J, Libby RA, Taylor JK, Wentler G (1983) Anal Chem 55:2210–2218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by an NSERC Discovery grant to Holger Hintelmann. We would like to acknowledge the contribution of Olivier Clarisse and Delphine Foucher for their help with sulfide analysis, and Chris Stadey and Ray March for their assistance with the Quattro LC–MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Hintelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, J.M., Hintelmann, H. Methylene blue derivatization then LC–MS analysis for measurement of trace levels of sulfide in aquatic samples. Anal Bioanal Chem 387, 2881–2886 (2007). https://doi.org/10.1007/s00216-007-1140-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1140-3

Keywords

Navigation