Skip to main content

Advertisement

Log in

Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Infrared (IR) spectroscopic imaging coupled with microscopy has been used to investigate thin sections of cervix uteri encompassing normal tissue, precancerous structures, and squamous cell carcinoma. Methods for unsupervised distinction of tissue types based on IR spectroscopy were developed. One-hundred and twenty-two images of cervical tissue were recorded by an FTIR spectrometer with a 64×64 focal plane array detector. The 499,712 IR spectra obtained were grouped by an approach which used fuzzy C-means clustering followed by hierarchical cluster analysis. The resulting false color maps were correlated with the morphological characteristics of an adjacent section of hematoxylin and eosin-stained tissue. In the first step, cervical stroma, epithelium, inflammation, blood vessels, and mucus could be distinguished in IR images by analysis of the spectral fingerprint region (950–1480 cm−1). In the second step, analysis in the spectral window 1420–1480 cm−1 enables, for the first time, IR spectroscopic distinction between the basal layer, dysplastic lesions and squamous cell carcinoma within a particular sample. The joint application of IR microspectroscopic imaging and multivariate spectral processing combines diffraction-limited lateral optical resolution on the single cell level with highly specific and sensitive spectral classification on the molecular level. Compared with previous reports our approach constitutes a significant progress in the development of optical molecular spectroscopic techniques toward an additional diagnostic tool for the early histopathological characterization of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.  5

Similar content being viewed by others

Abbreviations

IR:

Infrared

Pap:

Papanicolaou

H&E:

Hematoxylin and eosin

FPA:

Focal plane array

FT:

Fourier transform

FCM:

Fuzzy C-means

HCA:

Hierarchical cluster analysis

References

  1. Dukor RK (2002) In: Chalmers JM, Griffiths PR (eds.) Handbook of Vibrational Spectroscopy. John Wiley and Sons Ltd., New York 3335–3361

    Google Scholar 

  2. Wood BR, Chiriboga L, Yee H, Quinn MA, McNaughton D, Diem M (2004) Gynecol Oncol 93:59–68

    Article  PubMed  CAS  Google Scholar 

  3. Wong PTT, Lacelle S, Fung Kee Fung M, Sentermann M, Mikhael NZ (1995) Biospectroscopy 1:357–364

    Article  CAS  Google Scholar 

  4. Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, Podshyvalov A, Goldstein J, Argov S (2004) J Microsc 215:86–91

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  5. Chang JI, Huang YB, Wu PC, Chen CC, Huang SC, Tsai YH (2003) Gynecol Oncol 91:577–583

    Article  PubMed  Google Scholar 

  6. Chiriboga L, Xie P, Yee H, Zarou D, Zakim D, Diem M (1998) Cell Mol Biol 44:219–229

    PubMed  CAS  Google Scholar 

  7. Scully RE, Bonfiglio TA, Kurman RJ, Silverberg SG, Wilkinson EJ (1994) WHO—Histological typing of female genital tract tumors. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Zaino RJ, Ward S, Delgado G, Bundy B, Gore H, Fetter G, Ganjei P, Frauenhoffer E (1992) Cancer 69:1750–1758

    Article  PubMed  CAS  Google Scholar 

  9. Tsuda H, Mikami Y, Kaku T, Akiyama F, Hasegawa T, Okada S, Hayashi I, Kasamatsu T (2003) Pathol Int 53:440–449

    Article  PubMed  Google Scholar 

  10. Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B (2004) Faraday Discuss 126:289–302

    Article  PubMed  CAS  Google Scholar 

  11. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Anal Chem 67:3377–3381

    Article  PubMed  CAS  Google Scholar 

  12. Kidder LH, Kalasinsky VF, Luke JL, Levin IW, Lewis EN (1997) Nature Medicine 3:235–237

    Article  PubMed  CAS  Google Scholar 

  13. Potter K, Kidder LH, Levin IW, Lewis EN, Spencer RGS (2001) Arthritis and Rheumatism 44:846–855

    Article  PubMed  CAS  Google Scholar 

  14. Camacho NP, West P, Torzilli PA, Mendelsohn R (2001) Biopolymers 62:1–8

    Article  PubMed  CAS  Google Scholar 

  15. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) J Bone Miner Res 16:893-900

    Article  CAS  Google Scholar 

  16. Fabian H, Lasch P, Boese M, Haensch W (2002) Biopolymers 67:354–357

    Article  PubMed  CAS  Google Scholar 

  17. Krafft C, Salzer R, Soff G, Meyer-Hermann M (2005) Cytometry A 64A:53–61

    Article  Google Scholar 

  18. Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Nat Biotech 23:469–474

    Article  CAS  Google Scholar 

  19. Romeo M, Burden FR, Wood BR, Quinn MA, Tait B, McNaughton D (1998) Cell Mol Biol 44:179–187

    PubMed  CAS  Google Scholar 

  20. Cohenford MA, Godwin TA, Cahn F, Bhandare P, Caputo TA, Rigas B (1997) Gynecol Oncol 66:59–65

    Article  PubMed  CAS  Google Scholar 

  21. Shaw RA, Guijon FB, Paraskevas M, Ying SL, Mantsch HH (1999) Anal Quant Cytol Histol 21:292–302

    CAS  Google Scholar 

  22. Lasch P, Naumann D (1998) Cell Mol Biol 44:189–202

    PubMed  CAS  Google Scholar 

  23. Horn LC, Fischer U, Bilek K (2001) Zentralbl Gynakol 123:255–265

    Article  PubMed  CAS  Google Scholar 

  24. Tran TN, Wehrens R, Buydens LMC (2005) Chem Intell Lab Systems 77:3–17

    Google Scholar 

  25. Lasch P, Haensch W, Naumann D, Diem M (2004) Biochim Biophys Acta 1688:176–186

    PubMed  CAS  Google Scholar 

  26. Wood BR, Quinn MA, Tait B, Romeo M (1998) Biospectroscopy 4:75–91

    Article  PubMed  CAS  Google Scholar 

  27. Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M (1998) Biospectroscopy 4:47–53

    Article  PubMed  CAS  Google Scholar 

  28. Romeo M, Wood BR, McNaughton D (2002) Vib Spectrosc 28:167–175

    Article  CAS  Google Scholar 

  29. Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Biospectroscopy 5:219–227

    Article  PubMed  CAS  Google Scholar 

  30. Diem M, Boydston-White S, Chiriboga L (1999) Applied Spectroscopy 53:148A–161A

    Article  CAS  Google Scholar 

  31. Hanahan D, Weinberg RA (2000) Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  32. Lasch P, Naumann D (1998) Cell Mol Biol 44:189–202

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

W. Steller and C. Krafft are supported by the Volkswagen Foundation within the project “Molecular Endospectroscopy” of the program “Junior Research Groups at Universities”. U.-D. Braumann and H. Binder acknowledge financial support of the Deutsche Forschungsgemeinschaft under grant no. BIZ 6/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Krafft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steller, W., Einenkel, J., Horn, LC. et al. Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem 384, 145–154 (2006). https://doi.org/10.1007/s00216-005-0124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0124-4

Keywords