Skip to main content
Log in

New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In recent years scanning near-field optical microscopy (SNOM) has developed into a powerful surface analytical technique for observing specimens with lateral resolution equal to or even better than 100 nm. A large number of applications, from material science to biology, have been reported. In this paper, two different kinds of near-field optical microscopy, aperture and scattering-type SNOM, are reviewed together with recent studies in surface analysis and biology. Here, near-field optical techniques are discussed in comparison with related methods, such as scanning probe and standard optical microscopy, with respect to their specific advantages and fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy DB (2001) Fundamentals of Light Microscopy and Electronic Imaging. Wiley, New York

    Google Scholar 

  2. Abbe E (1873) Archiv Microskop 9:413–468

    Google Scholar 

  3. Strutt JW (Lord Rayleigh) (1874) Phil Mag 4:81–93, 193–205

    Google Scholar 

  4. Strutt JW (Lord Rayleigh) (1879) Phil Mag 8:261–274, 403–411, 477–486

    Google Scholar 

  5. Strutt JW (Lord Rayleigh) (1880) Phil Mag 9:40–55

    Google Scholar 

  6. Binning G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57–61

    Article  CAS  Google Scholar 

  7. Friedbacher G, Fuchs H (1999) Pure Appl Chem 71:1337–1357

    Article  CAS  Google Scholar 

  8. Paesler MA, Moyer PJ (1996) Near-field optics—theory, instrumentation, and applications. Wiley, New York

    Google Scholar 

  9. Dunn RC (1999) Chem Rev 99:2891–2928

    Article  CAS  PubMed  Google Scholar 

  10. Hsu JWP (2001) Mat Sci Eng R 33:1–50

    Article  Google Scholar 

  11. Courjon D (2003) Near field microscopy and near field optics. Imperial College Press, London

    Google Scholar 

  12. Dereux A, Girard C, Weeber J-C (2000) J Chem Phys 112:7775–7789

    Article  CAS  Google Scholar 

  13. Zayats AV, Smolyaninov II (2003) J Opt A Pure Appl Opt 5:S16–S50

    Article  CAS  Google Scholar 

  14. Zenobi R, Deckert V (2000) Angew Chem Int Ed 39:1747–1756

    CAS  Google Scholar 

  15. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) J Chem Phys 112:7761–7774

    Article  CAS  Google Scholar 

  16. De Serio M, Zenobi R, Deckert V (2003) TrAC 22:70–77

    Google Scholar 

  17. Synge EH (1928) Phil Mag 6:356–362

    CAS  Google Scholar 

  18. Ash EA, Nicholls G (1972) Nature 237:510–513

    CAS  PubMed  Google Scholar 

  19. Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651–653

    Article  Google Scholar 

  20. Lewis A, Issacson M, Harootunian A, Murray A (1984) Ultramicroscopy 13:227–231

    Article  Google Scholar 

  21. Betzig E, Trautman JK, Harris JS, Weiner JS, Kostelak RL (1991) Science 251:1468–1470

    Google Scholar 

  22. Harris CM (2003) Anal Chem 75:223A-228A

    CAS  PubMed  Google Scholar 

  23. Enderle T, Ha T, Ogletree DF, Chemla DS, Magowan C, Weiss S (1997) Proc Natl Acad Sci U S A 94:520–525

    Article  CAS  PubMed  Google Scholar 

  24. Enderle T, Ha T, Chemla DS, Weiss S (1998) Ultramicroscopy 71:303–309

    Article  CAS  PubMed  Google Scholar 

  25. Kramer A, Trabesinger W, Hecht B, Wild UP (2002) Appl Phys Lett 80:1652–1654

    Article  CAS  Google Scholar 

  26. Zayats AV, Sandoghdar V (2001) J Microsc 202:94–99

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Parajo M, Veerman JA, Ruiter AGT, van Hulst NF (1998) Ultramicroscopy 71:311–319

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Parajo MF, Segers-Nolten GM, Veerman JA, Greve J, van Hulst NF (2000) Proc Natl Acad Sci U S A 97:7237–7242

    Article  CAS  PubMed  Google Scholar 

  29. Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Anal Chem 70:2646–2650

    Article  CAS  Google Scholar 

  30. Fokas C, Deckert V (2002) Appl Spectrosc 56:192–199

    Article  CAS  Google Scholar 

  31. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Article  Google Scholar 

  32. Hartschuh A, Anderson N, Novotny L (2003) J Microsc 210:234–240

    Article  CAS  PubMed  Google Scholar 

  33. Akhremitchev BB, Sun Y, Stebounova L, Walker GC (2002) Langmuir 18:5325–5328

    Article  CAS  Google Scholar 

  34. Emory SR, Nie S (1997) Anal Chem 69:2631–2635

    Article  CAS  Google Scholar 

  35. Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang C-H (1992) Appl Phys Lett 61:142–144

    Article  CAS  Google Scholar 

  36. Ha T, Enderle T, Chemla DS, Selvin PR, Weiss S (1996) Phys Rev Lett 77:3979–3982

    Article  CAS  PubMed  Google Scholar 

  37. Orlik XK, Labardi M, Allegrini M (2000) Appl Phys Lett 77:2042–2044

    Article  CAS  Google Scholar 

  38. Stöckle R, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999) Appl Phys Lett 75:160–162

    Article  Google Scholar 

  39. Sayah A, Philipona C, Lambelet P, Pfeffer M, Marquis-Weible F (1998) Ultramicroscopy 71:59–63

    Article  CAS  Google Scholar 

  40. Minh PN, Ono T, Esashi M (2002) Fablication of silicon microprobes for optical near-field applications. CRC Press, Florida

    Google Scholar 

  41. Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) Appl Phys Lett 72:3115–3117

    Article  CAS  Google Scholar 

  42. Pilevar S, Edinger K, Atia W, Smolyaninov I, Davis C (1998) Appl Phys Lett 72:3133–3135

    Article  CAS  Google Scholar 

  43. Bouhelier A, Toquant J, Tamaru H, Güntherodt H-J, Pohl DW, Schider G (2001) Appl Phys Lett 79:683–685

    Article  CAS  Google Scholar 

  44. Ruiter AGT, Moers MGH, Jalocha A, van Hulst NF (1995) Ultramicroscopy 61:139–143

    Article  CAS  Google Scholar 

  45. Kim GM, Kim BJ, Ten Have ES, Segerink F, van Hulst NF, Brugger J (2002) J Microsc 209:267–271

    Google Scholar 

  46. Abraham M, Ehrfeld W, Lacher M, Mayr K, Noell W, Güthner P, Barenz J (1998) Ultramicroscopy 71:93–98

    Article  CAS  Google Scholar 

  47. Mihalcea C, Scholz W, Werner S, Munster S, Oesterschulze E, Kassing R (1996) Appl Phys Lett 68:3531–3533

    Article  CAS  Google Scholar 

  48. Karrai K, Grober RD (1995) Appl Phys Lett 66:1842–1844

    Article  CAS  Google Scholar 

  49. Patterson G, Day RN, Piston D (2001) J Cell Sci 114:837–838

    CAS  PubMed  Google Scholar 

  50. Stephens DJ, Allan VJ (2003) Science 300:82–86

    Article  CAS  PubMed  Google Scholar 

  51. Fradkov AF, Verkhusha VV, Staroverov DB, Bulina ME, Yanushevich YG, Martynov VI, Lukyanov S, Lukyanov KA (2002) Biochem J 368:17–21

    Article  CAS  PubMed  Google Scholar 

  52. Hiraoka Y, Shimi T, Haraguchi T (2002) Cell Struct Funct 27:367–374

    Article  PubMed  Google Scholar 

  53. Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F (2003) Mol Biol Cell 14:407–416

    Article  CAS  PubMed  Google Scholar 

  54. Colarusso P, Spring KR (2002) Biophys J 82:752–761

    CAS  PubMed  Google Scholar 

  55. Clancy C, Krogmeier JR, Pawlak A, Rozanowska M, Sarna T, Dunn RC, Simon JD (2000) J Phys Chem B 104:12098–12101

    Article  CAS  Google Scholar 

  56. Konig K (2000) J Microsc 200(Pt 2):83–104

    Article  CAS  PubMed  Google Scholar 

  57. Martinez-Corral M, Pons A, Caballero MT (2002) J Opt Soc Am A Opt Image Sci Vis 19:1532–1536

    PubMed  Google Scholar 

  58. Schrader M, Bahlmann K, Giese G, Hell SW (1998) Biophys J 75:1659–1668

    CAS  PubMed  Google Scholar 

  59. Egner A, Jakobs S, Hell SW (2002) Proc Natl Acad Sci U S A 99:3370–3375

    Article  CAS  PubMed  Google Scholar 

  60. Bahlmann K, Jakobs S, Hell SW (2001) Ultramicroscopy 87:155–164

    Article  CAS  PubMed  Google Scholar 

  61. Hell SW, Wichmann J (1994) Opt Lett 19:780–782

    Google Scholar 

  62. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  Google Scholar 

  63. Dyba M, Hell SW (2002) Phys Rev Lett 88:163901

    Article  PubMed  Google Scholar 

  64. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst NF, Figdor CG (2001) J Cell Sci 114:4153–4160

    PubMed  Google Scholar 

  65. Hollars CW, Dunn RC (1998) Biophys J 75:342–353

    CAS  PubMed  Google Scholar 

  66. Jahncke CL, Paesler MA, Hallen HD (1995) Appl Phys Lett 67:2483–2485

    Article  CAS  Google Scholar 

  67. Smith DA, Webster S, Ayad M, Evans SD, Fogherty D, Batchelder DN (1995) Ultramicroscopy 61:247-2

    Google Scholar 

  68. Webster S, Batchelder DN, Smith DA (1998) Appl Phys Lett 72:1478–1480

    Article  CAS  Google Scholar 

  69. Webster S, Smith DA, Batchelder DN (1998) Vib Spectrosc 18:51–59

    Article  CAS  Google Scholar 

  70. Webster S, Smith DA, Batchelder DN, Karlin S (1999) Synthetic Metals 102:1425–1427

    Article  CAS  Google Scholar 

  71. De Serio M, Bader AN, Heule M, Zenobi R, Deckert V (2003) Chem Phys Lett 380:47–53

    Article  Google Scholar 

  72. De Serio M, Mohapatra H, Zenobi R, Deckert V (2004) In preparation

  73. Kossakovski DA, O’Connor SD, Widmer M, Baldeschwieler JD, Beauchamp JL (1998) Ultramicroscopy 71:111–115

    Article  CAS  Google Scholar 

  74. Zeisel D, Nettesheim S, Dutoit B, Zenobi R (1996) Appl Phys Lett 68:2491–2492

    Article  CAS  Google Scholar 

  75. Stöckle R, Setz P, Deckert V, Zenobi R (2001) Anal Chem 73:1399

    Article  PubMed  Google Scholar 

  76. Wessel J (1985) J Opt Soc Am B 2:1538–1541

    CAS  Google Scholar 

  77. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623–1625

    Article  CAS  Google Scholar 

  78. Frey HG, Keilmann F, Kriele A, Guckenberger R (2002) Appl Phys Lett 81:5130-5132

    Article  CAS  Google Scholar 

  79. Micic M, Klymyshym N, Suh YD, Lu HP (2003) J Phys Chem B 107:1574–1584

    Article  CAS  Google Scholar 

  80. Bouhelier A, Renger J, Beversluis MR, Novotny L (2003) J Microsc 210:220–224

    Article  CAS  PubMed  Google Scholar 

  81. Renger J, Grafström S, Eng LM, Deckert V (2004) J Opt Soc Am A 21:1362–1367

    Article  CAS  Google Scholar 

  82. Martin OJF, Paulus M (2002) J Microsc 205:147–152

    Article  CAS  PubMed  Google Scholar 

  83. Hillenbrand R, Taubner T, Keilmann F (2002) Nature 418:159–162

    Article  CAS  PubMed  Google Scholar 

  84. Keilmann F (2002) Vib Spec 29:109–114

    Article  CAS  Google Scholar 

  85. Knoll B, Keilmann F (1999) Nature 399:134–137

    Article  CAS  Google Scholar 

  86. Knoll B, Keilmann F (1998) Appl Phys A 66:477–481

    Article  Google Scholar 

  87. Hillenbrand R, Keilmann F (2002) Appl Phys Lett 80:25–27

    Article  CAS  Google Scholar 

  88. Narita Y, Kimura S (2001) Anal Sci 17:i685-i687

    Google Scholar 

  89. Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:95503

    Google Scholar 

  90. Sun WX, Shen ZX (2003) Ultramicroscopy 94:237–244

    Article  CAS  PubMed  Google Scholar 

  91. Stokes DL, Chi Z, Vo-Dinh T (2004) Appl Spec 58:292–298

    Article  CAS  Google Scholar 

  92. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:96101

    Article  Google Scholar 

  93. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Appl Phys Lett 84:1768–1770

    Article  CAS  Google Scholar 

  94. Nie S, Emory SR (1997) Science 275:1102–1105

    Article  CAS  PubMed  Google Scholar 

  95. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183:333–336

    Article  CAS  Google Scholar 

  96. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2002) J Chem Phys 117:1296–1301

    Article  CAS  Google Scholar 

  97. Hayazawa N, Tarun A, Inouye Y, Kawata S (2002) J Appl Phys 92:6983–6986

    Article  CAS  Google Scholar 

  98. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369–374

    Article  CAS  Google Scholar 

  99. Sanchez EJ, Novotny L, Xie XS (1999) Phys Rev Lett 82:4014–4017

    Article  CAS  Google Scholar 

  100. Zayats AV, Kalkbrenner T, Sandoghdar V, Mlynek J (2000) Phys Rev B 61:4545–4548

    Article  CAS  Google Scholar 

  101. Zayats AV, Sandoghdar V (2000) Opt Commun 178:245–249

    Article  CAS  Google Scholar 

  102. Pralle A, Florin EL (2002) Methods Cell Biol 68:193–212

    PubMed  Google Scholar 

  103. Florin EL, Pralle A, Horber JK, Stelzer EH (1997) J Struct Biol 119:202–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Deckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, A., Deckert, V. New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy. Anal Bioanal Chem 381, 165–172 (2005). https://doi.org/10.1007/s00216-004-2896-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2896-3

Keywords

Navigation