Skip to main content
Log in

Voltammetric studies of the interaction of quinacrine with DNA

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The binding interaction of the antimalarial drug quinacrine with herring sperm deoxyribonucleic acid (DNA) has been studied by square wave voltammetry. The binding parameters, the binding constant K and the binding site size s, were obtained simultaneously by the analysis of bound and free quinacrine concentration corresponding to the limits of slow and fast binding kinetics compared to the experimental timescale. The binding constant and the binding site size for the interaction of quinacrine with DNA were K=1.59 (±0.18)×105 M−1 and s=7.1 (±0.15) base pairs and K=7.35 (±0.83)×105 M−1, s=6.2 (±0.02) base pairs for the limiting conditions of static and mobile binding equilibrium respectively. The standard Gibbs free energy change (ΔG0=−RT ln K) is approximately −29.67 kJ/mol at 25 °C, which highlights the spontaneity of the binding of quinacrine with DNA. The binding of quinacrine to herring sperm DNA results in peak potential shifts in voltammetric and a red shift in UV-absorption measurements. The ionic strength dependence of the binding constant is not large. Furthermore, the relative viscosity of DNA increases in the presence of quinacrine. These characteristics strongly support the intercalation of quinacrine into DNA. The results also show that the intercalation of quinacrine into DNA may occur at approximately every seventh base pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Waud WR (1995) In: Foye WO (ed) Cancer chemotherapeutic agents. American Chemical Society, Washington, pp 121–133

    Google Scholar 

  2. Johnston DH, Glasgow KC, Thorp HH (1995) J Am Chem Soc 117:8933

    CAS  Google Scholar 

  3. Labuda J, Buckova M, Vanickova M (1999) Electroanalysis 11:101

    Article  CAS  Google Scholar 

  4. Griffin JH, Dervan PB (1987) J Am Chem Soc 109:6840

    CAS  Google Scholar 

  5. Barton JK (1986) Science 233:727

    CAS  PubMed  Google Scholar 

  6. Palecek E, Fojta M (2001) Anal Chem 73:74A

    PubMed  Google Scholar 

  7. Takenaka S, Uto Y, Kondo H, Ihara T, Takagi M (1994) Anal Biochem 218:436

    Article  CAS  PubMed  Google Scholar 

  8. Chu X, Shen GL, Jiang JH, Kang TF, Xiong B, Yu RQ (1998) Anal Chim Acta 373:29

    Article  CAS  Google Scholar 

  9. Aslanoglu M (2004) Acta Chim Slov 51:107

    CAS  Google Scholar 

  10. Zhao GC, Zhu JJ, Zhang JJ, Chen HY (1999) Anal Chim Acta 394:337

    Article  CAS  Google Scholar 

  11. Lah J, Bezan M, Vesnaver G (2001) Acta Chim Slov 48:289

    CAS  Google Scholar 

  12. Maniatis T, Fritsch EF, Sanbrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  13. Viola G, Bressanini M, Gabellini N, Vedaldi D, Dall’Acqua F, Ihmels H (2002) Photochem Photobiol Sci 1:882

    Article  CAS  PubMed  Google Scholar 

  14. Hutchins RA, Crenshaw JM, Graves DE, Denny WA (2003) Biochemistry 42:13754

    Article  CAS  PubMed  Google Scholar 

  15. Arkin MR, Stemp EDA, Turro C, Turro NJ, Barton JK (1996) J Am Chem Soc 118:2267

    Article  CAS  Google Scholar 

  16. Li AZ, Qi JL, Shih HH, Marx KA (1995) Biopolymers 38:367

    Article  Google Scholar 

  17. Sandstrom K, Warmlander S, Leijon M, Graslunda A (2003) Biochem Biophys Res Commun 304:55

    Article  CAS  PubMed  Google Scholar 

  18. Su H, Williams P, Thompson M (1995) Anal Chem 67:1010

    CAS  PubMed  Google Scholar 

  19. Aslanoglu M, Houlton A, Horrocks BR (1998) Analyst 123:753

    Article  CAS  Google Scholar 

  20. Zhong W, Yu JH, Liang Y (2003) Spectrochim Acta A 59:1281

    Article  Google Scholar 

  21. Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901

    CAS  Google Scholar 

  22. Lu X, Zhu K, Zhang M, Liu H, Kang J (2002) J Biochem Bioph Meth 52:189

    Article  CAS  Google Scholar 

  23. Aslanoglu M, Isaac CJ, Houlton A, Horrocks BR (2000) Analyst 125:1791

    Article  CAS  PubMed  Google Scholar 

  24. Palecek E (2002) Talanta 56:809

    Article  CAS  Google Scholar 

  25. Ozsoz M, Erdem A, Kara P, Kerman K, Ozkan D (2003) Electroanalysis 15:613

    Article  CAS  Google Scholar 

  26. Welch TW, Thorp HH (1996) J Phys Chem 100:13829

    Article  CAS  Google Scholar 

  27. Dufilho MD, Brunet A, Privat C, Devynck MA (2002) Eur J Pharmcol 436:159

    Article  Google Scholar 

  28. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047

    CAS  Google Scholar 

  29. Mamur J (1961) J Mol Biol 3:208

    Google Scholar 

  30. Lu X, Zhang M, Kang J, Wang X, Zhuo L, Liu H (2004) J Inorg Biochem 98:582

    Article  CAS  PubMed  Google Scholar 

  31. Evans DH (1989) J Electroanal Chem 258:451

    Article  CAS  Google Scholar 

  32. Niu J, Cheng G, Dong S (1994) Electrochim Acta 39:2455

    Article  CAS  Google Scholar 

  33. Record MT, Lohman TM, DeHaseth PL (1976) J Mol Biol 107:145

    CAS  PubMed  Google Scholar 

  34. Record MT, Anderson CF, Lohman TM (1978) Q Rev Biophys 11:103

    CAS  PubMed  Google Scholar 

  35. Bloomfield VA, Crothersn DM, Tinoco I (1974) Physical chemistry of nucleic acids. Harper and Row, New York, p 432

    Google Scholar 

  36. Veal JM, Rill RL (1991) Biochemistry 30:1132

    CAS  PubMed  Google Scholar 

  37. Lerman LS (1961) J Mol Biol 3:18

    CAS  PubMed  Google Scholar 

  38. Rivas L, Murza A, Sanchez-Cortes S, Garcia-Ramos JV (2000) J Biomol Struct Dyn 18:371

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the Scientific and Technical Research Council of Turkey (Project No. TBAG-2234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Aslanoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslanoglu, M., Ayne, G. Voltammetric studies of the interaction of quinacrine with DNA. Anal Bioanal Chem 380, 658–663 (2004). https://doi.org/10.1007/s00216-004-2797-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2797-5

Keywords

Navigation