Skip to main content
Log in

Determination of the thiol redox state of organisms: new oxidative stress indicators

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study describes a new methodology by which the concentrations of non-protein (NP) thiols glutathione (GSH), cysteine (CSH), N-acetylcysteine (AcCSH), and protein (P) thiols (PSH), as well as the contribution of these components to symmetric and mixed disulfides (NPSSR, NPSSC, NPSSCAc, PSSR, PSSC, PSSCAc, PSSP) can reliably be measured. The methodology consists of a strict sequence of methods which are applied to every sample. Free thiols at any given state of the procedure are measured by Ellman’s assay, the CSH fraction is measured by its unique response in the ninhydrin assay, AcCSH is selectively measured with ninhydrin after enzymatic deacylation, proteins are separated from non-protein thiols/disulfides by precipitation with trichloroacetic or perchloric acid, disulfides are reduced into free thiols with borohydride, mixed disulfides between a protein and a non-protein component are measured by extracting the non-protein thiol from the protein pellet after borohydride treatment, and protein thiols/disulfides are measured after resolubilization of the protein pellet.

When this method was applied to animal and fungal tissue, new molecular indicators of the thiol redox state of living cells were identified. The findings of the present study clearly show that the new parameters are very sensitive indicators of redox state, while at the same time the traditional parameters GSH and GSSG often remain constant even upon dramatic changes in the overall redox state of biological tissue. Therefore, unbiased assessment of the redox state also requires explicit measurement of its most sensitive thiol indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3A–C

Similar content being viewed by others

References

  1. Sies H (1999) Free Rad Biol Med 27:916–921

    Article  PubMed  Google Scholar 

  2. Halliwell B, Gutteridge CMJ (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

  3. Giles IG, Tasker MK, Jacob C (2001) Free Rad Biol Med 31:1279–1283

    Article  PubMed  Google Scholar 

  4. Akerboom MPT, Sies H (1981) In: Colowick SP, Kaplan ON (eds) Methods in enzymology, vol 77. Academic Press, New York, pp 373–382

  5. Li J, Huang LF, Huang PK (2001) J Biol Chem 276:3098–3105

    Article  PubMed  Google Scholar 

  6. Harrap RK, Jackson CR, Riches GP, Smith AC, Hill TB (1973) Biochim Biophys Acta 310:104–110

    Article  PubMed  Google Scholar 

  7. Gilbert FH (1995) In: Packer L (ed) Methods in enzymology, vol 251. Academic Press, New York, pp 8–28

  8. Ratbbun BW (1990) In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton, pp 193–206

  9. Miquel J, Weber H (1990) In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton, pp 187–192

  10. Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

  11. van der Vliet A, Cross EC, Halliwell B, O’Neill AC (1995) In: Packer L (ed) Methods in enzymology, vol 251. Academic Press, New York, pp 448–455

  12. Cotgreave AI, Weis M, Atzori L, Moldéus P (1990) In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton, pp 155–175

  13. Brigelius-Flohé R (1999) Free Rad Biol Med 27:951–965

    Article  PubMed  Google Scholar 

  14. Ewing FJ, Janero RD (1998) Free Rad Biol Med 25:621–628

    Article  PubMed  Google Scholar 

  15. Täger M, Piecyk A, Köhnlein T, Thiel U, Ansorge S, Welte T (2000) Free Rad Biol Med 29:1160–1165

    Article  PubMed  Google Scholar 

  16. David LL, Shearer RT (1984) Toxicol Appl Pharmacol 74:109–115

    PubMed  Google Scholar 

  17. Tietze F (1969) Anal Biochem 27:502–522

    CAS  PubMed  Google Scholar 

  18. Ellman LG (1959) Arch Biochem Biophys 82:70–77

    CAS  Google Scholar 

  19. Redegeld FAM, Koster AS, van Bennekom WP (1990) In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton, pp 11–20

  20. Hissin JP, Hilf R (1976) Anal Biochem 74:214–226

    CAS  PubMed  Google Scholar 

  21. Ball RC (1966) Biochem Pharmacol 15:809–816

    Article  PubMed  Google Scholar 

  22. Riener CK, Kada G, Gruber HJ (2002) Anal Bioanal Chem 373:266–276

    Article  PubMed  Google Scholar 

  23. Ogwu V, Cohen G (1998) Free Rad Biol Med 25:362–364

    Article  PubMed  Google Scholar 

  24. Puka-Sundvall M, Eriksson P, Nilsson M, Sandberg M, Lehmann A (1995) Brain Res 705:65–70

    Article  PubMed  Google Scholar 

  25. McLellan LI, Lewis AD, Hall DJ, Ansell JD, Wolf CR (1995) Carcinogenesis 16:2099–2106

    PubMed  Google Scholar 

  26. Georgiou DC, Zervoudakis G, Tairis N, Kornaros M (2001) Fungal Gen Biol 34:11–20

    Article  Google Scholar 

  27. Wong KB, Corcoran BG (1990) In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton, pp 255–262

  28. Habeeb ASFA (1973) Anal Biochem 56:60–65

    PubMed  Google Scholar 

  29. Means EG, Feeney ER (1971) Chemical modification of proteins. Holden-Day, San Francisco

  30. Gaitonde KM (1967) Biochem J 104:627–633

    PubMed  Google Scholar 

  31. Margenau H, Murphy MG (1976) The mathematics of physics and chemistry. Krieger, New York

  32. Tang S-S, Lin C-C, Chang G-G (1996) Free Rad Biol Med 21:955–964

    Article  PubMed  Google Scholar 

  33. Brigelius R, Muckel C, Akerboom MPT, Sies H (1983) Biochem Pharmacol 32:2529–2534

    Article  PubMed  Google Scholar 

  34. Buege JA, Aust SD (1978) In: Fleisher S, Packer L (eds) Methods in enzymology, vol 52. Academic Press, New York, pp 302–310

  35. Nickander KK, McPhee RB, Low AP, Tritschler H (1996) Free Rad Biol Med 21:631–639

    Article  PubMed  Google Scholar 

  36. Sedmak JJ, Grossberg ES (1977) Anal Biochem 79:544–552

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Greek Ministry of Education and by ‘K. Karatheodoris Program’, University of Patras, Greece. Dr D. Synetos and Dr Nikolaos Matsokis (from Biochemistry Department of School of Medicine and from Biology Department, respectively, of the University of Patras, Greece), contributed significantly to this work by providing yeast and mice, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos D. Georgiou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patsoukis, N., Georgiou, C.D. Determination of the thiol redox state of organisms: new oxidative stress indicators. Anal Bioanal Chem 378, 1783–1792 (2004). https://doi.org/10.1007/s00216-004-2525-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2525-1

Keywords

Navigation