Skip to main content
Log in

Structural study of spirolide marine toxins by mass spectrometry

Part I. Fragmentation pathways of 13-desmethyl spirolide C by collision-induced dissociation and infrared multiphoton dissociation mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel group of toxins, the spirolides, has been investigated by several mass spectrometric (MS) methods to enable structure elucidation and metabolite identification. These macrocyclic compounds, produced by the dinoflagellate Alexandrium ostenfeldii, are a new class of marine phycotoxin with characteristic spiro-linked tricyclic ether and imine moieties. A crude phytoplankton extract has been shown to contain known spirolides and several unknown compounds, present at low yet significant levels. This study has focused on mass spectrometric characterization of the main component of this extract, 13-desmethyl spirolide C. Collision-induced dissociation (CID) spectra were collected on triple-quadrupole and quadrupole linear ion-trap instruments. High-resolution Fourier-transform ion cyclotron resonance MS data revealed the accurate masses of the protonated molecule and the product ions formed by infrared multiphoton dissociation. A fragmentation scheme for this toxin has been proposed to explain the formation of the collision-induced fragments. Charge-remote fragmentations dominate the CID spectra, because there is only one predominantly basic site in this molecule, and prove to be structurally informative. Extensive MS characterization of 13-desmethyl spirolide C will undoubtedly be useful in the characterization of known and unknown spirolides and other related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu T, Curtis JM, Oshima Y, Quilliam MA, Walter JA, Watson-Wright WM, Wright JLC (1995) J Chem Soc Chem Commun 2159–2161

  2. Cembella AD, Quilliam MA, Lewis NI, Bauder AG, Wright JLC (1998) Harmful Algae 481–484

  3. Cembella AD, Bauder AG, Lewis NI, Quilliam MA (2001) J Plankton Res 23:1413–1419

    Article  Google Scholar 

  4. Gribble KE, Keafer BA, Kulis DM, Cembella AD, Anderson DM (2003) In: Proc 10th Int Conf on Harmful Algae, October 21–25, 2002, St Pete Beach, Florida, USA, p 116

  5. MacKinnon SL, Cembella AD, Quilliam MA, LeBlanc P, Lewis NI, Hardstaff WR, Burton IW, Walter JA (2003) In: Proc 10th Int Conf on Harmful Algae, October 21–25, 2002, St Pete Beach, Florida, USA, p 180

  6. Rühl A, Hummert C, Reinhardt K, Gerdts G, Luckas B (2001) In: Proc Int Council for the Exploration of the Sea (ICES), Oslo, Norway 2001/S:09

  7. Richard D, Arsenault E, Cembella A, Quilliam M (2000) Harmful Algal Blooms 383–386

  8. Cembella AD, Lewis NI, Quilliam MA (1999) Nat Toxins 7:197–206

    Article  PubMed  Google Scholar 

  9. Cembella AD, Lewis NI, Quilliam MA (2000) Phycologia 39:67–74

    Google Scholar 

  10. Cembella AD, Bauder AG, Lewis NI, Quilliam MA (2000) In: Hallegraff GM, Blackburn SI, Bolch CJ, Lewis RJ (eds) Harmful algal blooms. Intergovernmental Oceanographic Commission of UNESCO, 2001, pp 173–176

  11. Hu T, Burton IW, Cembella AD, Curtis JM, Quilliam MA, Walter JA, Wright JLC (2001) J Nat Prod 64:308–312

    Article  PubMed  Google Scholar 

  12. Hu T, Curtis JM, Walter JA, Wright JLC (1996) Tetrahedron Lett 37:7671–7674

    Article  Google Scholar 

  13. Uemura D, Chou T, Haino T, Nagatsu A, Fukuzawa S, Zheng S, Chen H (1995) J Am Chem Soc 117:1155–1156

    CAS  Google Scholar 

  14. Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T (1995) Tetrahedron Lett 36:7093–7096

    Article  Google Scholar 

  15. Chou T, Haino T, Kuramoto M, Uemura D (1996) Tetrahedron Lett 37:4027–4030

    Article  Google Scholar 

  16. Mackenzie L, Haywood T, Adamson J, Truman P, Till D, Seki T, Satake M, Yasumoto T (1995) In: Yasumoto T, Oshiwa Y, Fukuyo Y (eds) Harmful and toxic algal blooms, Proc 7th Int Conf on Toxic Phytoplankton, Sendai, Japan, July 12–16, 1995, International Oceanographic Commission of UNESCO, 1996, pp 97–100

  17. Falk M, Burton IW, Hu T, Walter JA, Wright JLC (2001) Tetrahedron 57:8659–8665

    Article  Google Scholar 

  18. Naoki H, Murata M, Yasumoto T (1993) Rapid Commun Mass Spectrom 7:179–182

    CAS  Google Scholar 

  19. Ukena T, Satake M, Usami M, Oshima Y, Fujita T, Naoki H, Yasumoto T (2002) Rapid Commun Mass Spectrom 16:2387–2393

    Article  PubMed  Google Scholar 

  20. Premstaller A, Ongania K-H, Huber CG (2001) Rapid Commun Mass Spectrom 15:1045–1052

    Article  PubMed  Google Scholar 

  21. Triolo A, Altamura M, Cardinali F, Sisto A, Maggi CA (2001) J Mass Spectrom 36:1249–1259

    Google Scholar 

  22. Pramanik BN, Ganguly AK, Gross ML (2002) (eds) Applied electrospray mass spectrometry. Marcel Dekker, New York

  23. Strife RJ, Robosky LC, Garrett G, Ketcha MM, Scaffer JD, Zhang N (2000) Rapid Commun Mass Spectrom 14:250–260

    Article  PubMed  Google Scholar 

  24. Hager JW, Le Blanc JCY (2003) Rapid Commun Mass Spectrom 17:1056–1064

    CAS  PubMed  Google Scholar 

  25. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  26. Sleno L, Chalmers MJ, Volmer DA (2003) Anal Bioanal Chem, (in press)

  27. Guillard RRL, Hargraves PE (1993) Phycologia 32:234–236

    Google Scholar 

  28. Brombacher S, Edmonds S, Volmer DA (2002) Rapid Commun Mass Spectrom 16:2306–2316

    Article  PubMed  Google Scholar 

  29. Chowdhury SK, Katta V, Chait BT (1990) Rapid Commun Mass Spectrom 4:81–87

    CAS  PubMed  Google Scholar 

  30. Wilcox BE, Hendrickson CL, Marshall AG (2002) J Am Soc Mass Spectrom 13:1304–1312

    CAS  PubMed  Google Scholar 

  31. Marshall AG, Verdun FR (1990) Fourier transforms in NMR, optimal, and mass spectrometry: a user’s handbook. Elsevier, Amsterdam

  32. Shi, SD-H, Drader JJ, Freitas MA, Hendrickson CL, Marshall AG (2000) Int J Mass Spectrom 195/196:591–598

    Google Scholar 

  33. Ledford EB Jr, Rempel DL, Gross ML (1984) Anal Chem 56:2744–2748

    PubMed  Google Scholar 

  34. Marshall AG, Wang T-CL, Ricca TL (1985) J Am Chem Soc 107:7893–7897

    CAS  Google Scholar 

  35. Guan S, Marshall AG (1996) Int J Mass Spectrom Ion Processes 157/158:5–37

    Google Scholar 

  36. Senko MW, Canterbury JD, Guan S, Marshall AG (1996) Rapid Commun Mass Spectrom 10:1839–1844

    Article  CAS  Google Scholar 

  37. Volmer DA, Lock CM (1998) Rapid Commun Mass Spectrom 12:157–164

    Article  Google Scholar 

  38. Quilliam MA (1995) J AOAC Int 78:555–570

    CAS  PubMed  Google Scholar 

  39. Lewis RJ, Holmes MJ, Alewood PF, Jones A (1994) Nat Toxins 2:56–63

    CAS  PubMed  Google Scholar 

  40. Adams J (1990) Mass Spectrom Rev 9:141–186

    CAS  Google Scholar 

  41. Cheng C, Gross ML (2000) Mass Spectrom Rev 19:398–420

    Article  Google Scholar 

  42. Adams J, Gross ML (1986) J Am Chem Soc 108:6915–6921

    CAS  Google Scholar 

  43. Adams J, Gross ML (1989) J Am Chem Soc 111:435–440

    CAS  Google Scholar 

  44. Tureček F, Hanuš V (1984) Mass Spectrom Rev 3:85–152

    Google Scholar 

  45. Takada N, Umemura N, Suenaga K, Chou T, Nagatsu A, Haino T, Yamada K, Uemura D (2001) Tetrahedron Lett 42:3491–3494

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Michael Chalmers and Dr Alan Marshall at the NHMFL in Tallahassee, FL, USA, for the FTICR data (work supported in part by the NSF National High-Field FTICR MS Facility, CHE-99-09502). LS acknowledges financial assistance received from le Fonds Quebecois de la recherche sur la nature et les technologies (FCAR), the National Research Council’s Graduate Student Scholarship Supplement Program (GSSSP) and Dr Alan Cembella at the National Research Council’s Institute for Marine Biosciences. We would also like to thank Dr Stuart Grossert (Dalhousie University, Halifax, NS) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich A Volmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleno, L., Windust, A.J. & Volmer, D.A. Structural study of spirolide marine toxins by mass spectrometry. Anal Bioanal Chem 378, 969–976 (2004). https://doi.org/10.1007/s00216-003-2297-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2297-z

Keywords

Navigation